PuSH - Publication Server of Helmholtz Zentrum München

Ramesh, V. ; Bayam, E. ; Cernilogar, F.M.* ; Bonapace, I.M.* ; Schulze, M.* ; Riemenschneider, M.J.* ; Schotta, G.* ; Götz, M.

Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration.

Genes Dev. 30, 2199-2212 (2016)
Publ. Version/Full Text Research data DOI
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
In order to understand whether early epigenetic mechanisms instruct the long-term behavior of neural stem cells (NSCs) and their progeny, we examined Uhrf1 (ubiquitin-like PHD ring finger-1; also known as Np95), as it is highly expressed in NSCs of the developing brain and rapidly down-regulated upon differentiation. Conditional deletion of Uhrf1 in the developing cerebral cortex resulted in rather normal proliferation and neurogenesis but severe postnatal neurodegeneration. During development, deletion of Uhrf1 lead to global DNA hypomethylation with a strong activation of the intracisternal A particle (IAP) family of endogenous retroviral elements, accompanied by an increase in 5-hydroxymethylcytosine. Down-regulation of Tet enzymes rescued the IAP activation in Uhrf1 conditional knockout (cKO) cells, suggesting an antagonistic interplay between Uhrf1 and Tet on IAP regulation. As IAP up-regulation persists into postnatal stages in the Uhrf1 cKO mice, our data show the lack of means to repress IAPs in differentiating neurons that normally never express Uhrf1. The high load of viral proteins and other transcriptional deregulation ultimately led to postnatal neurodegeneration. Taken together, these data show that early developmental NSC factors can have long-term effects in neuronal differentiation and survival. Moreover, they highlight how specific the consequences of widespread changes in DNA methylation are for certain classes of retroviral elements.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords 5hmc ; Iap ; Neural Stem Cells ; Neuronal Differentiation ; Tet; Hemi-methylated Dna; Endogenous Retroviruses; Mammalian-cells; Protein Uhrf1; Self-renewal; Sra Domain; Dnmt1; 5-hydroxymethylcytosine; Methyltransferase; Expression
ISSN (print) / ISBN 0890-9369
e-ISSN 1549-5477
Quellenangaben Volume: 30, Issue: 19, Pages: 2199-2212 Article Number: , Supplement: ,
Publisher Cold Spring Harbor Laboratory Press
Publishing Place Cold Spring Harbor
Non-patent literature Publications
Reviewing status Peer reviewed