PuSH - Publication Server of Helmholtz Zentrum München

Feigelman, J. ; Ganscha, S. ; Hastreiter, S.* ; Schwarzfischer, M. ; Filipczyk, A.* ; Schröder, T.* ; Theis, F.J. ; Marr, C. ; Claassen, M.

Analysis of cell lineage trees by exact bayesian inference identifies negative autoregulation of nanog in mouse embryonic stem cells.

Cell Syst. 3, 480-490 (2016)
Publ. Version/Full Text Research data DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Many cellular effectors of pluripotency are dynamically regulated. In principle, regulatory mechanisms can be inferred from single-cell observations of effector activity across time. However, rigorous inference techniques suitable for noisy, incomplete, and heterogeneous data are lacking. Here, we introduce stochastic inference on lineage trees (STILT), an algorithm capable of identifying stochastic models that accurately describe the quantitative behavior of cell fate markers observed using time-lapse microscopy data collected from proliferating cell populations. STILT performs exact Bayesian parameter inference and stochastic model selection using a particle-filter-based algorithm. We use STILT to investigate the autoregulation of Nanog, a heterogeneously expressed core pluripotency factor, in mouse embryonic stem cells. STILT rejects the possibility of positive Nanog autoregulation with high confidence; instead, model predictions indicate weak negative feedback. We use STILT for rational experimental design and validate model predictions using novel experimental data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
0.000
0.000
5
21
Tags
Icb_qscd
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Stochastic Gene-expression; Single-cell; Self-renewal; Pluripotency; Quantification; Heterogeneity; Simulation; Protein; Autorepression; Variability
Language
Publication Year 2016
HGF-reported in Year 0
ISSN (print) / ISBN 2405-4712
e-ISSN 2405-4720
Journal Cell Systems
Quellenangaben Volume: 3, Issue: 5, Pages: 480-490 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Maryland Heights, MO
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
Erfassungsdatum 2016-12-12