Hierarchical post-transcriptional regulation of colicin E2 expression in Escherichia coli.
PLoS Comput. Biol. 12:e1005243 (2016)
Post-transcriptional regulation of gene expression plays a crucial role in many bacterial pathways. In particular, the translation of mRNA can be regulated by trans-acting, small, non-coding RNAs (sRNAs) or mRNA-binding proteins, each of which has been successfully treated theoretically using two-component models. An important system that includes a combination of these modes of post-transcriptional regulation is the Colicin E2 system. DNA damage, by triggering the SOS response, leads to the heterogeneous expression of the Colicin E2 operon including the cea gene encoding the toxin colicin E2, and the cel gene that codes for the induction of cell lysis and release of colicin. Although previous studies have uncovered the system’s basic regulatory interactions, its dynamical behavior is still unknown. Here, we develop a simple, yet comprehensive, mathematical model of the colicin E2 regulatory network, and study its dynamics. Its post-transcriptional regulation can be reduced to three hierarchically ordered components: the mRNA including the cel gene, the mRNA-binding protein CsrA, and an effective sRNA that regulates CsrA. We demonstrate that the stationary state of this system exhibits a pronounced threshold in the abundance of free mRNA. As post-transcriptional regulation is known to be noisy, we performed a detailed stochastic analysis, and found fluctuations to be largest at production rates close to the threshold. The magnitude of fluctuations can be tuned by the rate of production of the sRNA. To study the dynamics in response to an SOS signal, we incorporated the LexA-RecA SOS response network into our model. We found that CsrA regulation filtered out short-lived activation peaks and caused a delay in lysis gene expression for prolonged SOS signals, which is also seen in experiments. Moreover, we showed that a stochastic SOS signal creates a broad lysis time distribution. Our model thus theoretically describes Colicin E2 expression dynamics in detail and reveals the importance of the specific regulatory components for the timing of toxin release.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Binding Protein Csra; Rock-paper-scissors; Rna Molecule Csrb; Gene-expression; Plasmid; Operon; Transcription; Degradation; Thresholds; Immunity
Keywords plus
Language
english
Publication Year
2016
Prepublished in Year
HGF-reported in Year
2016
ISSN (print) / ISBN
1553-734X
e-ISSN
1553-7358
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 12,
Issue: 12,
Pages: ,
Article Number: e1005243
Supplement: ,
Series
Publisher
Public Library of Science (PLoS)
Publishing Place
San Francisco
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505500-001
Grants
Copyright
Erfassungsdatum
2016-12-20