Rapid genome-wide recruitment of RNA polymerase II drives transcription, splicing, and translation events during T cell responses.
Cell Rep. 19, 643-654 (2017)
Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP), and RNA polymerase II (RNA Pol II) ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD) and activation of the positive transcription elongation factor (pTEFb). Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
4su ; H3k36 ; Rna Pol Ii ; Ser-2 Rna Pol Ii ; Ser-5 Rna Pol Ii ; T Cell Activation ; Cotranscriptional Splicing ; Immediate-early Genes ; Immune Response ; Ribosome Profiling
Keywords plus
Language
english
Publication Year
2017
Prepublished in Year
HGF-reported in Year
2017
ISSN (print) / ISBN
2211-1247
e-ISSN
2211-1247
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 19,
Issue: 3,
Pages: 643-654
Article Number: ,
Supplement: ,
Series
Publisher
Cell Press
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
90000 - German Center for Diabetes Research
30205 - Bioengineering and Digital Health
Research field(s)
Helmholtz Diabetes Center
Enabling and Novel Technologies
PSP Element(s)
G-501900-227
G-553500-001
G-501900-226
Grants
Copyright
Erfassungsdatum
2017-07-04