Feasibility of reducing differences in estimated doses in nuclear medicine between a patient-specific and a reference phantom.
Phys. Med. 39, 100-112 (2017)
The feasibility of reducing the differences between patient-specific internal doses and doses estimated using reference phantoms was evaluated. Relatively simple adjustments to a polygon-surface ICRP adult male reference phantom were applied to fit selected individual dimensions using the software Rhinoceros®4.0. We tested this approach on two patient-specific phantoms: the biggest and the smallest phantoms from the Helmholtz Zentrum München library. These phantoms have unrelated anatomy and large differences in body-mass-index. Three models approximating each patient's anatomy were considered: the voxel and the polygon-surface ICRP adult male reference phantoms and the adjusted polygon-surface reference phantom. The Specific Absorbed Fractions (SAFs) for internal photon and electron sources were calculated with the Monte Carlo code EGSnrc. Employing the time-integrated activity coefficients of a radiopharmaceutical (S)-4-(3-(18)F-fluoropropyl)-l-glutamic acid and the calculated SAFs, organ absorbed-dose coefficients were computed following the formalism promulgated by the Committee on Medical Internal Radiation Dose. We compared the absorbed-dose coefficients between each patient-specific phantom and other models considered with emphasis on the cross-fire component. The corresponding differences for most organs were notably lower for the adjusted reference models compared to the case when reference models were employed. Overall, the proposed approach provided reliable dose estimates for both tested patient-specific models despite the pronounced differences in their anatomy. To capture the full range of inter-individual anatomic variability more patient-specific phantoms are required. The results of this test study suggest a feasibility of estimating patient-specific doses within a relative uncertainty of 25% or less using adjusted reference models, when only simple phantom scaling is applied.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Cross-fire ; Human Computational Phantom ; Nuclear Medicine ; Personalised Internal Dose; Reference Computational Phantoms; Adult Human Phantoms; Female Voxel Models; Conversion Coefficients; Radiation Protection; Monte-carlo; Internal Dosimetry; Absorbed Fractions; Pediatric-patients; Imaging Research
Keywords plus
Language
english
Publication Year
2017
Prepublished in Year
HGF-reported in Year
2017
ISSN (print) / ISBN
1120-1797
e-ISSN
1724-191X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 39,
Issue: ,
Pages: 100-112
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Oxford
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30203 - Molecular Targets and Therapies
Research field(s)
Radiation Sciences
PSP Element(s)
G-501100-008
G-501391-001
G-501100-004
G-501100-001
Grants
Copyright
Erfassungsdatum
2017-07-12