Wang, E.* ; Martre, P.* ; Zhao, Z.* ; Ewert, F.* ; Maiorano, A.* ; Rötter, R.P.* ; Kimball, B.A.* ; Ottman, M.J.* ; Wall, G.W.* ; White, J.W.* ; Reynolds, M.P.* ; Alderman, P.D.* ; Aggarwal, P.K.* ; Anothai, J.* ; Basso, B.* ; Biernath, C.J. ; Cammarano, D.* ; Challinor, A.J.* ; de Sanctis, G.* ; Doltra, J.* ; Fereres, E.* ; Garcia-Vila, M.* ; Gayler, S.* ; Hoogenboom, G.* ; Hunt, L.A.* ; Izaurralde, R.C.* ; Jabloun, M.* ; Jones, C.D.* ; Kersebaum, K.C.* ; Koehler, A.-K.* ; Liu, L.* ; Müller, C.* ; Naresh Kumar, S.* ; Nendel, C.* ; O'Leary, G.* ; Olesen, J.E.* ; Palosuo, T.* ; Priesack, E. ; Eyshi Rezaei, E.* ; Ripoche, D.* ; Ruane, A.C.* ; Semenov, M.A.* ; Shcherbak, I.* ; Stöckle, C.* ; Stratonovitch, P.* ; Streck,T.* ; Supit, I.* ; Tao, F.* ; Thorburn, P.J.* ; Waha, K.* ; Wallach, D.* ; Wang, Z.* ; Wolf, J.* ; Zhu, Y.* ; Asseng, S.*
The uncertainty of crop yield projections is reduced by improved temperature response functions.
Nat. Plants 3:17102 (2017)
Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Winter-wheat; Spring Wheat; Phenological Development; Developmental Processes; Protein-composition; Leaf Appearance; Sowing Dates; Model; Simulation; Growth
Keywords plus
Language
Publication Year
2017
Prepublished in Year
HGF-reported in Year
2017
ISSN (print) / ISBN
2055-026X
e-ISSN
2055-0278
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 3,
Issue: 8,
Pages: ,
Article Number: 17102
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504912-001
Grants
Copyright
Erfassungsdatum
2017-07-19