PuSH - Publication Server of Helmholtz Zentrum München

Riedl, A. ; Gieger, C. ; Hauner, H* ; Daniel, H.* ; Linseisen, J.

Metabotyping and its application in targeted nutrition: An overview.

Br. J. Nutr. 117, 1631-1644 (2017)
Publ. Version/Full Text Postprint DOI PMC
Open Access Green
Metabolic diversity leads to differences in nutrient requirements and responses to diet and medication between individuals. Using the concept of metabotyping - that is, grouping metabolically similar individuals - tailored and more efficient recommendations may be achieved. The aim of this study was to review the current literature on metabotyping and to explore its potential for better targeted dietary intervention in subjects with and without metabolic diseases. A comprehensive literature search was performed in PubMed, Google and Google Scholar to find relevant articles on metabotyping in humans including healthy individuals, population-based samples and patients with chronic metabolic diseases. A total of thirty-four research articles on human studies were identified, which established more homogeneous subgroups of individuals using statistical methods for analysing metabolic data. Differences between studies were found with respect to the samples/populations studied, the clustering variables used, the statistical methods applied and the metabotypes defined. According to the number and type of the selected clustering variables, the definitions of metabotypes differed substantially; they ranged between general fasting metabotypes, more specific fasting parameter subgroups like plasma lipoprotein or fatty acid clusters and response groups to defined meal challenges or dietary interventions. This demonstrates that the term 'metabotype' has a subjective usage, calling for a formalised definition. In conclusion, this literature review shows that metabotyping can help identify subgroups of individuals responding differently to defined nutritional interventions. Targeted recommendations may be given at such metabotype group levels. Future studies should develop and validate definitions of generally valid metabotypes by exploiting the increasingly available metabolomics data sets.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.706
0.000
32
39
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Enable Cluster ; Metabolic Phenotypes ; Metabotypes ; Metabotyping ; Targeted Nutrition; Metabolic Risk-factors; Personalized Nutrition; Cluster-analysis; H-1-nmr Spectroscopy; Metabonomic Analysis; Pattern-recognition; Gender-differences; Alpk-apfcd; Phenotypes; Women
Language english
Publication Year 2017
HGF-reported in Year 2017
ISSN (print) / ISBN 0007-1145
e-ISSN 1475-2662
Quellenangaben Volume: 117, Issue: 12, Pages: 1631-1644 Article Number: , Supplement: ,
Publisher Cambridge Univ. Press
Publishing Place Cambridge
Reviewing status Peer reviewed
Institute(s) Institute of Epidemiology (EPI)
POF-Topic(s) 30202 - Environmental Health
90000 - German Center for Diabetes Research
Research field(s) Genetics and Epidemiology
PSP Element(s) G-504000-007
G-504091-004
G-501900-401
Scopus ID 85024478153
PubMed ID 28720150
Erfassungsdatum 2017-07-27