PuSH - Publication Server of Helmholtz Zentrum München

Ligon, T.S.* ; Fröhlich, F. ; Chi, O.T.* ; Banga, J.R.* ; Balsa-Canto, E.* ; Hasenauer, J.

GenSSI 2.0: Multi-experiment structural identifiability analysis of SBML models.

Bioinformatics 34, 1421-1423 (2017)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Motivation Mathematical modeling using ordinary differential equations is used in systems biology to improve the understanding of dynamic biological processes. The parameters of ordinary differential equation models are usually estimated from experimental data. To analyze a priori the uniqueness of the solution of the estimation problem, structural identifiability analysis methods have been developed. Results We introduce GenSSI 2.0, an advancement of the software toolbox GenSSI (Generating Series for testing Structural Identifiability). GenSSI 2.0 is the first toolbox for structural identifiability analysis to implement Systems Biology Markup Language import, state/parameter transformations and multi-experiment structural identifiability analysis. In addition, GenSSI 2.0 supports a range of MATLAB versions and is computationally more efficient than its previous version, enabling the analysis of more complex models.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
ISSN (print) / ISBN 1367-4803
e-ISSN 1367-4811
Journal Bioinformatics
Quellenangaben Volume: 34, Issue: 8, Pages: 1421-1423 Article Number: , Supplement: ,
Publisher Oxford University Press
Publishing Place Oxford
Non-patent literature Publications
Reviewing status Peer reviewed