PuSH - Publication Server of Helmholtz Zentrum München

Schmidt, S.* ; Linge, A.* ; Zwanenburg, A.* ; Leger, S.* ; Lohaus, F.* ; Krenn, C.* ; Appold, S.* ; Gudziol, V.* ; Nowak, A.* ; von Neubeck, C.* ; Tinhofer, I.* ; Budach, V.* ; Sak, A.* ; Stuschke, M.* ; Balermpas, P.* ; Roedel, C.* ; Bunea, H.* ; Grosu, A.* ; Abdollahi, A.* ; Debus, J.* ; Ganswindt, U. ; Belka, C. ; Pigorsch, S.U.* ; Combs, S.E. ; Moennich, D.* ; Zips, D.* ; Baretton, G.B.* ; Buchholz, F.* ; Baumann, M.* ; Krause, M.* ; Loeck, S.*

Development and validation of a gene signature for patients with head and neck squamous cell carcinomas treated by postoperative radio(chemo)therapy.

Clin. Cancer Res. 24, 1364-1374 (2018)
Publ. Version/Full Text Postprint DOI
Open Access Green
Purpose: The aim of this study was to identify and independently validate a novel gene signature predicting locoregional tumor control (LRC) for treatment individualization of patients with locally advanced HPV-negative head and neck squamous cell carcinomas (HNSCC) who are treated with postoperative radio (chemo)therapy (PORT-C). Experimental Design: Gene expression analyses were performed using NanoString technology on a multicenter training cohort of 130 patients and an independent validation cohort of 121 patients. The analyzed gene set was composed of genes with a previously reported association with radio(chemo)sensitivity or resistance to radio(chemo)therapy. Gene selection and model building were performed comparing several machine-learning algorithms. Results: We identified a 7-gene signature consisting of the three individual genes HILPDA, CD24, TCF3, and one metagene combining the highly correlated genes SERPINE1, INHBA, P4HA2, and ACTN1. The 7-gene signature was used, in combination with clinical parameters, to fit a multivariable Cox model to the training data (concordance index, ci ¼ 0.82), which was successfully validated (ci ¼ 0.71). The signature showed improved performance compared with clinical parameters alone (ci ¼ 0.66) and with a previously published model including hypoxia-associated genes and cancer stem cell markers (ci ¼ 0.65). It was used to stratify patients into groups with low and high risk of recurrence, leading to significant differences in LRC in training and validation (P < 0.001). Conclusions: We have identified and validated the first hypothesis-based gene signature for HPV-negative HNSCC treated by PORT-C including genes related to several radiobiological aspects. A prospective validation is planned in an ongoing prospective clinical trial before potential application in clinical trials for patient stratification.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
10.199
1.904
21
28
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Squamous-cell Carcinoma; Group Dktk-rog; Cancer Stem-cells; Good Prognosis Subgroups; Radiation Oncology; Fractionated-irradiation; Marker Expression; Hpv Status; Hypoxia; Multicenter
Language english
Publication Year 2018
HGF-reported in Year 2018
ISSN (print) / ISBN 1078-0432
e-ISSN 1557-3265
Quellenangaben Volume: 24, Issue: 6, Pages: 1364-1374 Article Number: , Supplement: ,
Publisher American Association for Cancer Research (AACR)
Publishing Place Philadelphia
Reviewing status Peer reviewed
POF-Topic(s) 30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30203 - Molecular Targets and Therapies
Research field(s) Radiation Sciences
PSP Element(s) G-521800-001
G-501300-001
Scopus ID 85048083415
Erfassungsdatum 2018-04-13