PuSH - Publication Server of Helmholtz Zentrum München

Balyura, M.* ; Gelfgat, E.* ; Steenblock, C.* ; Androutsellis-Theotokis, A.* ; Ruiz-Babot, G.* ; Guasti, L.* ; Werdermann, M.* ; Ludwig, B. ; Bornstein, T.D.* ; Schally, A.V.* ; Brennand, A.* ; Bornstein, S.R.

Expression of progenitor markers is associated with the functionality of a bioartificial adrenal cortex.

PLoS ONE 13:e0194643 (2018)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Encapsulation of primary bovine adrenocortical cells in alginate is an efficacious model of a bioartificial adrenal cortex. Such a bioartificial adrenal cortex can be used for the restoration of lost adrenal function in vivo as well as for in vitro modeling of the adrenal microenvironment and for investigation of cell-cell interactions in the adrenals. The aim of this work was the optimization of a bioartificial adrenal cortex, that is the generation of a highly productive, self-regenerating, long-term functioning and immune tolerant bioartificial organ. To achieve this, it is necessary that adrenocortical stem and progenitor cells are present in the bioartificial gland, as these undifferentiated cells play important roles in the function of the mature gland. Here, we verified the presence of adrenocortical progenitors in cultures of bovine adrenocortical cells, studied the dynamics of their appearance and growth and determined the optimal time point for cell encapsulation. These procedures increased the functional life span and reduced the immunogenicity of the bioartificial adrenal cortex. This model allows the use of the luteinizing hormone-releasing hormone (LHRH) agonist triptorelin, the neuropeptide bombesin, and retinoic acid to alter cell number and the release of cortisol over long periods of time.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Hormone-releasing-hormone; Tumor-necrosis-factor; Adrenocortical-cells; Stem-cells; Nestin Expression; Pancreatic-islets; Gene-expression; Growth; Proliferation; Steroidogenesis
ISSN (print) / ISBN 1932-6203
Journal PLoS ONE
Quellenangaben Volume: 13, Issue: 3, Pages: , Article Number: e0194643 Supplement: ,
Publisher Public Library of Science (PLoS)
Publishing Place Lawrence, Kan.
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Institute of Pancreatic Islet Research (IPI)