PuSH - Publication Server of Helmholtz Zentrum München

Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy.

J. Biophotonics 11:e201700359 (2018)
Publ. Version/Full Text Postprint Research data DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
The aim of this study was to explore the unique imaging abilities of optoacoustic mesoscopy to visualize skin structures and microvasculature with the view of establishing a robust approach for monitoring heat-induced hyperemia in human skin in vivo. Using raster-scan optoacoustic mesoscopy (RSOM), we investigated whether optoacoustic (photoacoustic) mesoscopy can identify changes in skin response to local heating at microvasculature resolution in a cross-sectional fashion through skin in the human forearm. We visualized the heat-induced hyperemia for the first time with single-vessel resolution throughout the whole skin depth. We quantified changes in total blood volume in the skin and their correlation with local heating. In response to local heating, total blood volume increased 1.83- and 1.76-fold, respectively, in the volar and dorsal aspects of forearm skin. We demonstrate RSOM imaging of the dilation of individual vessels in the skin microvasculature, consistent with hyperemic response to heating at the skin surface. Our results demonstrate great potential of RSOM for elucidating the morphology, functional state and reactivity of dermal microvasculature, with implications for diagnostics and disease monitoring. Image: Cross-sectional view of skin microvasculature dilated in response to hyperthermia.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Hyperemia ; Induced Hyperthermia ; Optoacoustic Techniques ; Skin ; Vasodilation; Cerebral-blood-flow; Tomography; Temperature; Dysfunction; Mechanisms; Microscopy; Model
ISSN (print) / ISBN 1864-063X
e-ISSN 1864-0648
Quellenangaben Volume: 11, Issue: 11, Pages: , Article Number: e201700359 Supplement: ,
Publisher Wiley
Publishing Place Postfach 101161, 69451 Weinheim, Germany
Non-patent literature Publications
Reviewing status Peer reviewed