PuSH - Publication Server of Helmholtz Zentrum München

Haghverdi, L. ; Lun, A.T.L.* ; Morgan, M.D.* ; Marioni, J.C.*

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.

Nat. Biotechnol. 36, 421-427 (2018)
Postprint DOI
Open Access Green
Large-scale single-cell RNA sequencing (scRNA-seq) data sets that are produced in different laboratories and at different times contain batch effects that may compromise the integration and interpretation of the data. Existing scRNA-seq analysis methods incorrectly assume that the composition of cell populations is either known or identical across batches. We present a strategy for batch correction based on the detection of mutual nearest neighbors (MNNs) in the high-dimensional expression space. Our approach does not rely on predefined or equal population compositions across batches; instead, it requires only that a subset of the population be shared between batches. We demonstrate the superiority of our approach compared with existing methods by using both simulated and real scRNA-seq data sets. Using multiple droplet-based scRNA-seq data sets, we demonstrate that our MNN batch-effect-correction method can be scaled to large numbers of cells.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
ISSN (print) / ISBN 1087-0156
e-ISSN 1546-1696
Quellenangaben Volume: 36, Issue: 5, Pages: 421-427 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place New York, NY
Non-patent literature Publications
Reviewing status Peer reviewed