PuSH - Publication Server of Helmholtz Zentrum München

Fröhlich, F. ; Kessler, T.* ; Weindl, D. ; Shadrin, A.* ; Schmiester, L. ; Hache, H.* ; Muradyan, A.* ; Schütte, M.* ; Lim, J.H.* ; Heinig, M. ; Theis, F.J. ; Lehrach, H.* ; Wierling, C.* ; Lange, B.* ; Hasenauer, J.

Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model.

Cell Syst. 7, 567-579 (2018)
Publ. Version/Full Text Research data DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Mechanistic models are essential to deepen the understanding of complex diseases at the molecular level. Nowadays, high-throughput molecular and phenotypic characterizations are possible, but the integration of such data with prior knowledge on signaling pathways is limited by the availability of scalable computational methods. Here, we present a computational framework for the parameterization of large-scale mechanistic models and its application to the prediction of drug response of cancer cell lines from exome and transcriptome sequencing data. This framework is over 10 4 times faster than state-of-the-art methods, which enables modeling at previously infeasible scales. By applying the framework to a model describing major cancer-associated pathways (>1,200 species and >2,600 reactions), we could predict the effect of drug combinations from single drug data. This is the first integration of high-throughput datasets using large-scale mechanistic models. We anticipate this to be the starting point for development of more comprehensive models allowing a deeper mechanistic insight.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
8.982
1.915
38
48
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Biomarker ; Cancer Signaling ; Drug Response ; Drug Synergy ; Mechanistic Modeling ; Parameter Estimation ; Sequencing Data ; Systems Biology; Systems Biology; Sensitivity; Discovery; Resource; Metrics
Language
Publication Year 2018
HGF-reported in Year 2018
ISSN (print) / ISBN 2405-4712
e-ISSN 2405-4720
Journal Cell Systems
Quellenangaben Volume: 7, Issue: 6, Pages: 567-579 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Maryland Heights, MO
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-553800-001
G-503800-001
Scopus ID 85059226141
PubMed ID 30503647
Erfassungsdatum 2018-12-13