PuSH - Publication Server of Helmholtz Zentrum München

Chatzopoulou, E.I.* ; Raharja-Liu, P. ; Murschhauser, A.* ; Sekhavati, F.* ; Buggenthin, F. ; Vollmar, A.M.* ; Marr, C. ; Rädler, J.O.*

A single-cell micro-trench platform for automatic monitoring of cell division and apoptosis after chemotherapeutic drug administration.

Sci. Rep. 8:18042 (2018)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Cells vary in their dynamic response to external stimuli, due to stochastic fluctuations and non-uniform progression through the cell cycle. Hence, single-cell studies are required to reveal the range of heterogeneity in their responses to defined perturbations, which provides detailed insight into signaling processes. Here, we present a time-lapse study using arrays of micro-trenches to monitor the timing of cell division and apoptosis in non-adherent cells at the single-cell level. By employing automated cell tracking and division detection, we precisely determine cell cycle duration and sister-cell correlations for hundreds of individual cells in parallel. As a model application we study the response of leukemia cells to the chemostatic drug vincristine as a function of cell cycle phase. The time-to-death after drug addition is found to depend both on drug concentration and cell cycle phase. The resulting timing and dose-response distributions were reproduced in control experiments using synchronized cell populations. Interestingly, in non-synchronized cells, the time-to-death intervals for sister cells appear to be correlated. Our study demonstrates the practical benefits of micro-trench arrays as a platform for high-throughput, single-cell time-lapse studies on cell cycle dependence, correlations and cell fate decisions in general.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.122
1.245
1
4
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Lineage Choice; Cancer-cells; Particle Tracking; Leukemia-cells; Cycle; Vincristine; Vinblastine; Array; Heterogeneity; Microtubules
Language english
Publication Year 2018
HGF-reported in Year 2018
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Quellenangaben Volume: 8, Issue: 1, Pages: , Article Number: 18042 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
Scopus ID 85058910472
PubMed ID 30575776
Erfassungsdatum 2019-01-09