Mazur, P.K.* ; Grüner, B.M.* ; Nakhai, H.* ; Sipos, B.* ; Zimber-Strobl, U.* ; Strobl, L.J. ; Radtke, F.* ; Schmid, R.M.* ; Siveke, J.T.*
     
    
        
Identification of epidermal pdx1 expression discloses different roles of notch1 and notch2 in murine KrasG12D-induced skin carcinogenesis in vivo.
    
    
        
    
    
        
        PLoS ONE 5:e13578 (2010)
    
    
    
      
      
	
	    BACKGROUND: The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic Kras(G12D) mice with ablation of Notch1 and/or Notch2. METHODOLOGY/PRINCIPAL FINDINGS: Surprisingly, mice with activated Kras(G12D) and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. CONCLUSIONS/SIGNIFICANCE: Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        TRANSCRIPTION FACTOR PDX-1; BETA-CATENIN; KERATINOCYTE GROWTH; TUMOR-SUPPRESSOR; STEM-CELLS; MOUSE; ACTIVATION; MICE; GENE; RAS
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2010
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2010
    
 
    
    
        ISSN (print) / ISBN
        1932-6203
    
 
    
        e-ISSN
        
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 5,  
	    Issue: 10,  
	    Pages: ,  
	    Article Number: e13578 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Public Library of Science (PLoS)
        
 
        
            Publishing Place
            Lawrence, Kan.
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Immune Response and Infection
    
 
    
        PSP Element(s)
        G-501500-003
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2010-11-08