PuSH - Publication Server of Helmholtz Zentrum München

Meehan, M.T.* ; Cocks, D.G.* ; Müller, J. ; McBryde, E.S.*

Global stability properties of a class of renewal epidemic models.

J. Math. Biol. 78, 1713-1725 (2019)
Postprint DOI PMC
Open Access Green
We investigate the global dynamics of a general Kermack-McKendrick-type epidemic model formulated in terms of a system of renewal equations. Specifically, we consider a renewal model for which both the force of infection and the infected removal rates are arbitrary functions of the infection age, , and use the direct Lyapunov method to establish the global asymptotic stability of the equilibrium solutions. In particular, we show that the basic reproduction number, R0, represents a sharp threshold parameter such that for R01, the infection-free equilibrium is globally asymptotically stable; whereas the endemic equilibrium becomes globally asymptotically stable when R0>1, i.e. when it exists.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
1.940
1.253
1
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Global Stability ; Lyapunov ; Renewal ; Kermack-mckendrick
Language
Publication Year 2019
HGF-reported in Year 2019
ISSN (print) / ISBN 0303-6812
e-ISSN 1432-1416
Quellenangaben Volume: 78, Issue: 6, Pages: 1713-1725 Article Number: , Supplement: ,
Publisher Springer
Publishing Place Tiergartenstrasse 17, D-69121 Heidelberg, Germany
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
Scopus ID 85061291856
PubMed ID 30737545
Erfassungsdatum 2019-03-13