Profound weight loss induces reactive astrogliosis in the arcuate nucleus of obese mice.
Mol. Metab. 24, 149-155 (2019)
Objective: Obesity has been linked to an inflammation like state in the hypothalamus, mainly characterized by reactive gliosis (RG) of astrocytes and microglia. Here, using two diet models or pharmacological treatment, we assessed the effects of mild and drastic weight loss on RG, in the context of high-fat diet (HFD) induced obesity.Methods: We subjected HFD-induced obese (DIO) male C57BU6J mice to a weight loss intervention with a switch to standard chow, calorie restriction (CR), or treatment with the Glp1 receptor agonist Exendin-4 (EX4). The severity of RG was estimated by an ordinal scoring system based on fluorescence intensities of glial fibrillary acidic protein, ionized calcium-binding adapter molecule 1 positive (Iba1), cell numbers, and morphological characteristics.Results: In contrast to previous reports, DIO mice fed chronically with HFD showed no differences in microglial or astrocytic RG, compared to chow controls. Moreover, mild or profound weight loss had no impact on microglial RG. However, astrocyte RG was increased in CR and EX4 groups compared to chow fed animals and strongly correlated to body weight loss. Profound weight loss by either CR or EX4 was further linked to increased levels of circulating non-esterified free fatty acids.Conclusions: Overall, our data demonstrate that in a chronically obese state, astrocyte and microglial RG is indifferent from that observed in age-matched chow controls. Nonetheless, profound acute weight loss can induce astrocyte RG in the hypothalamic arcuate nucleus, possibly due to increased circulating NEFAs. This suggests that astrocytes may sense acute changes to both the dietary environment and body weight.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Reactive Gliosis ; Obesity ; Astrocyte ; Weight Loss ; Hypothalamus ; Inflammation; Insulin; Mechanism; Leptin; Astrocytes
Keywords plus
Language
english
Publication Year
2019
Prepublished in Year
HGF-reported in Year
2019
ISSN (print) / ISBN
2212-8778
e-ISSN
2212-8778
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 24,
Issue: ,
Pages: 149-155
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Amsterdam
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30201 - Metabolic Health
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-502294-001
G-502200-001
Grants
Copyright
Erfassungsdatum
2019-04-12