PuSH - Publication Server of Helmholtz Zentrum München

Bressin, A.* ; Schulte-Sasse, R.* ; Figini, D.* ; Urdaneta, E.C.* ; Beckmann, B.M.* ; Marsico, A.

TriPepSVM: De novo prediction of RNA-binding proteins based on short amino acid motifs.

Nucleic Acids Res. 47, 4406-4417 (2019)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
In recent years, hundreds of novel RNA-binding proteins (RBPs) have been identified, leading to the discovery of novel RNA-binding domains. Furthermore, unstructured or disordered low-complexity regions of RBPs have been identified to play an important role in interactions with nucleic acids. However, these advances in understanding RBPs are limited mainly to eukaryotic species and we only have limited tools to faithfully predict RNA-binders in bacteria. Here, we describe a support vector machine-based method, called TriPepSVM, for the prediction of RNA-binding proteins. TriPepSVM applies string kernels to directly handle protein sequences using tri-peptide frequencies. Testing the method in human and bacteria, we find that several RBP-enriched tri-peptides occur more often in structurally disordered regions of RBPs. TriPepSVM outperforms existing applications, which consider classical structural features of RNA-binding or homology, in the task of RBP prediction in both human and bacteria. Finally, we predict 66 novel RBPs in Salmonella Typhimurium and validate the bacterial proteins ClpX, DnaJ and UbiG to associate with RNA in vivo.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
11.147
3.156
19
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2019
HGF-reported in Year 2019
ISSN (print) / ISBN 0305-1048
e-ISSN 1362-4962
Quellenangaben Volume: 47, Issue: 9, Pages: 4406-4417 Article Number: , Supplement: ,
Publisher Oxford University Press
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
Scopus ID 85066056313
PubMed ID 30923827
Erfassungsdatum 2019-05-13