Skin surface detection in 3D optoacoustic mesoscopy based on dynamic programming,
IEEE Trans. Med. Imaging 39, 458-467 (2020)
Optoacoustic (photoacoustic) mesoscopy offers unique capabilities in skin imaging and resolves skin features associated with detection, diagnosis, and management of disease. A critical first step in the quantitative analysis of clinical optoacoustic images is to identify the skin surface in a rapid, reliable, and automated manner. Nevertheless, most common edge- and surface-detection algorithms cannot reliably detect the skin surface on 3D raster-scan optoacoustic mesoscopy (RSOM) images, due to discontinuities and diffuse interfaces in the image. We present herein a novel dynamic programming approach that extracts the skin boundary as a 2D surface in one single step, as opposed to consecutive extraction of several independent 1D contours. A domain-specific energy function is introduced, taking into account the properties of volumetric optoacoustic mesoscopy images. The accuracy of the proposed method is validated on scans of the volar forearm of 19 volunteers with different skin complexions, for which the skin surface has been traced manually to provide a reference. In addition, the robustness and the limitations of the method are demonstrated on data where the skin boundaries are low-contrast or ill-defined. The automatic skin surface detection method can improve the speed and accuracy in the analysis of quantitative features seen on the RSOM images and accelerate the clinical translation of the technique. Our method can likely be extended to identify other types of surfaces in the RSOM and other imaging modalities.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
2d Front Propagation ; Optoacoustic Imaging ; Skin Extraction ; Surface Segmentation; Microvasculature; Quantification; Segmentation; Tomography; Microscopy
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
2019
HGF-reported in Year
2019
ISSN (print) / ISBN
0278-0062
e-ISSN
1558-254X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 39,
Issue: 2,
Pages: 458-467
Article Number: ,
Supplement: ,
Series
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Publishing Place
New York, NY [u.a.]
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505500-001
Grants
Copyright
Erfassungsdatum
2019-07-26