Real time monitoring of slow pyrolysis of polyethylene terephthalate (PET) by different mass spectrometric techniques.
Waste Manag. 106, 226-239 (2020)
In the context of waste upgrading of polyethylene terephthalate (PET) by pyrolysis, this study presents three on-line mass spectrometric techniques with soft ionization for monitoring the emitted decomposition products and their thermal dependent evolution profiles. Pyrolysis experiments were performed using a thermogravimetric analyzer (TGA) under nitrogen atmosphere with a heating rate of 5 degrees C/min from 30 degrees C to 600 degrees C. Single-photon ionization (SPI at 118 nm/10.5 eV) and resonance enhanced multiple photon ionization (REMPI at 266 nm) were used with time-of-flight mass spectrometry (TOF-MS) for evolved gas analysis (TGA-SPI/REMPI-TOFMS). Additionally, the chemical signature of the pyrolysis products was investigated by atmospheric pressure chemical ionization (APCI) ultra high resolution Fourier Transform ion cyclotron resonance mass spectrometry (FT-ICR MS) which enables assignment of molecular sum formulas (TGA-APCI FT-ICR MS). Despite the soft ionization by SPI, the fragmentation of some compounds with the loss of the [O-CH = CH2] fragment is observed. The major compounds were acetaldehyde (m/z 44), benzoic acid (m/z 122) and a fragment of m/z 149. Using REMPI, aromatic species were selectively detected. Several series of pyrolysis products were observed in different temperature intervals, showing the presence of polycyclic aromatic hydrocarbons (PAHs), especially at high temperatures. FT-ICR MS data showed, that the CHO4 class was the most abundant compound class with a relative abundance of 45.5%. The major compounds detected with this technique corresponded to m/z 193.0495 (C10H9O4+) and 149.0233 (C8H5O3+). Based on detailed chemical information, bulk reaction pathways are proposed, showing the formation of both cyclic monomer/dimer and linear structures.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Pyrolysis ; Polyethylene Terephthalate ; Rempi ; Spi ; Ft-icr Ms ; Apci ; Tof-ms; Single-photon Ionization; Pressure Chemical-ionization; Thermal-decomposition; Co-pyrolysis; Degradation; Ms; Oils; Gas; Hyphenation; Components
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
0956-053X
e-ISSN
1879-2456
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 106,
Issue: ,
Pages: 226-239
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
New York
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504500-001
Grants
Copyright
Erfassungsdatum
2020-04-15