Increased mitochondrial respiration of adipocytes from metabolically unhealthy obese compared to healthy obese individuals.
Sci. Rep. 10:12407 (2020)
Among obese subjects, metabolically healthy (MHO) and unhealthy obese (MUHO) subjects exist, the latter being characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Insulin resistance and obesity are known to associate with alterations in mitochondrial density, morphology, and function. Therefore, we assessed mitochondrial function in human subcutaneous preadipocytes as well as in differentiated adipocytes derived from well-matched donors. Primary subcutaneous preadipocytes from 4 insulin-resistant (MUHO) versus 4 insulin-sensitive (MHO), non-diabetic, morbidly obese Caucasians (BMI > 40 kg/m(2)), matched for sex, age, BMI, and percentage of body fat, were differentiated in vitro to adipocytes. Real-time cellular respiration was measured using an XF24 Extracellular Flux Analyzer (Seahorse). Lipolysis was stimulated by forskolin (FSK) treatment. Mitochondrial respiration was fourfold higher in adipocytes versus preadipocytes (p = 1.6*10(-9)). In adipocytes, a negative correlation of mitochondrial respiration with donors' insulin sensitivity was shown (p = 0.0008). Correspondingly, in adipocytes of MUHO subjects, an increased basal respiration (p = 0.002), higher proton leak (p = 0.04), elevated ATP production (p = 0.01), increased maximal respiration (p = 0.02), and higher spare respiratory capacity (p = 0.03) were found, compared to MHO. After stimulation with FSK, the differences in ATP production, maximal respiration and spare respiratory capacity were blunted. The differences in mitochondrial respiration between MUHO/MHO were not due to altered mitochondrial content, fuel switch, or lipid metabolism. Thus, despite the insulin resistance of MUHO, we could clearly show an elevated mitochondrial respiration of MUHO adipocytes. We suggest that the higher mitochondrial respiration reflects a compensatory mechanism to cope with insulin resistance and its consequences. Preserving this state of compensation might be an attractive goal for preventing or delaying the transition from insulin resistance to overt diabetes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Beta-cell Dysfunction; Key Protective Factor; Insulin-resistance; Adipose-tissue; Oxygen-consumption; Arachidonic-acid; Fat; Sensitivity; Lipolysis; Stimulation
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
2045-2322
e-ISSN
2045-2322
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 10,
Issue: 1,
Pages: ,
Article Number: 12407
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
90000 - German Center for Diabetes Research
30201 - Metabolic Health
Research field(s)
Helmholtz Diabetes Center
Genetics and Epidemiology
PSP Element(s)
G-502400-001
G-500600-001
Grants
Copyright
Erfassungsdatum
2020-07-30