PuSH - Publication Server of Helmholtz Zentrum München

Sieberts, S.K.* ; Perumal, T.M.* ; Carrasquillo, M.M.* ; Allen, M.* ; Reddy, J.S.* ; Hoffman, G.E.* ; Dang, K.K.* ; Calley, J.* ; Ebert, P.J.* ; Eddy, J.* ; Wang, X.* ; Greenwood, A.K.* ; Mostafavi, S.* ; Omberg, L.* ; Peters, M.A.* ; Logsdon, B.A.* ; de Jager, P.L.* ; Ertekin-Taner, N.* ; Mangravite, L.M.* ; The AMP-AD Consortium (Arnold, M.)

Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions.

Sci. Data 7:340 (2020)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
5.541
2.887
22
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2020
HGF-reported in Year 2020
ISSN (print) / ISBN 2052-4463
e-ISSN 2052-4463
Journal Scientific Data
Quellenangaben Volume: 7, Issue: 1, Pages: , Article Number: 340 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503891-001
Scopus ID 85092511647
PubMed ID 33046718
Erfassungsdatum 2020-11-24