Leger, S.* ; Zwanenburg, A.* ; Leger, K.* ; Lohaus, F.* ; Linge, A.* ; Schreiber, A.* ; Kalinauskaite, G.* ; Tinhofer, I.* ; Guberina, N.* ; Guberina, M.* ; Balermpas, P.* ; Von der Grün, J.* ; Ganswindt, U. ; Belka, C. ; Peeken, J.C. ; Combs, S.E. ; Boeke, S.* ; Zips, D.* ; Richter, C.* ; Krause, M.* ; Baumann, M.* ; Troost, E.G.C.* ; Löck, S.*
Comprehensive analysis of tumour sub-volumes for radiomic risk modelling in locally advanced HNSCC.
Cancers 12:3047 (2020)
Simple Summary: Radiomic risk models are usually based on imaging features, which are extracted from the entire gross tumour volume (GTVentire). This approach does not explicitly consider the complex biological structure of the tumours. Therefore, in this retrospective study, we investigated the prognostic value of radiomic analyses based on different tumour sub-volumes using computed tomography imaging of patients with locally advanced head and neck squamous cell carcinoma who were treated with primary radio-chemotherapy. The GTVentire was cropped by different margins to define the rim and corresponding core sub-volumes of the tumour. Furthermore, the best performing tumour rim sub-volume was extended into surrounding tissue with different margins. As a result, the models based on the 5 mm tumour rim and on the 3 mm extended rim sub-volume showed an improved performance compared to models based on the corresponding tumour core. This indicates that the consideration of tumour sub-volumes may help to improve radiomic risk models.Imaging features for radiomic analyses are commonly calculated from the entire gross tumour volume (GTVentire). However, tumours are biologically complex and the consideration of different tumour regions in radiomic models may lead to an improved outcome prediction. Therefore, we investigated the prognostic value of radiomic analyses based on different tumour sub-volumes using computed tomography imaging of patients with locally advanced head and neck squamous cell carcinoma. The GTVentire was cropped by different margins to define the rim and the corresponding core sub-volumes of the tumour. Subsequently, the best performing tumour rim sub-volume was extended into surrounding tissue with different margins. Radiomic risk models were developed and validated using a retrospective cohort consisting of 291 patients in one of the six Partner Sites of the German Cancer Consortium Radiation Oncology Group treated between 2005 and 2013. The validation concordance index (C-index) averaged over all applied learning algorithms and feature selection methods using the GTVentire achieved a moderate prognostic performance for loco-regional tumour control (C-index: 0.61 +/- 0.04 (mean +/- std)). The models based on the 5 mm tumour rim and on the 3 mm extended rim sub-volume showed higher median performances (C-index: 0.65 +/- 0.02 and 0.64 +/- 0.05, respectively), while models based on the corresponding tumour core volumes performed less (C-index: 0.59 +/- 0.01). The difference in C-index between the 5 mm tumour rim and the corresponding core volume showed a statistical trend (p = 0.10). After additional prospective validation, the consideration of tumour sub-volumes may be a promising way to improve prognostic radiomic risk models.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Radiomic ; Image-based Risk Modelling ; Machine Learning ; Personalised Therapy ; Radiation Oncology; Primary Radiochemotherapy; Radiation Oncology; Prospective Trial; Hypoxia; Cancer; Head; Heterogeneity; Delineation; Survival
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
2072-6694
e-ISSN
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 12,
Issue: 10,
Pages: ,
Article Number: 3047
Supplement: ,
Series
Publisher
MDPI
Publishing Place
St Alban-anlage 66, Ch-4052 Basel, Switzerland
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30203 - Molecular Targets and Therapies
Research field(s)
Radiation Sciences
PSP Element(s)
G-521800-001
G-501300-001
Grants
Federal Ministry of Education and Research
Copyright
Erfassungsdatum
2020-11-26