: Postprint online available 12/2022
as soon as is submitted to ZB.
Electroactive microorganisms in mouse feces.
Electrochim. Acta 365:137326 (2021)
The gut microbiome is not only an indicator of different pathologies, but it also influences metabolism and overall health of the host. Recently, microorganisms inherent to the gut microbiome, such as Listeria monocytogenes, Enterococcus faecalis and Clostridium cochlearium, were demonstrated to be electroactive, i.e. to perform extracellular electron transfer (EET). To further explore the presence of electroactive microorganisms in the gut microbiome electrochemical enrichment starting from mouse feces was performed. Open circuit, abiotic and autoclaved inoculum controls were run in parallel. A maximum current density of 122±23 µA cm−2 at low coulombic efficiency ( ̴1%) was achieved. The presence of biofilms at the anode and microbial electrochemical activity with a formal potential of EET of 0.23±0.01 V vs. Ag/AgCl sat. KCl was demonstrated using fluorescence microscopy and cyclic voltammetry. The 16S rRNA gene sequencing and PCR-free Nanopore sequencing showed the enrichment and dominance of Shigella flexneri.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Electroactive Microorganisms ; Extracellular Electron Transfer (eet) ; Gut Microbiome ; Next Generation Sequencing (ngs) ; Whole Genome Sequencing (wgs); Shigella-flexneri; Electrochemical Reduction; Gut Microbiota; Genomes
ISSN (print) / ISBN
0013-4686
e-ISSN
0013-4686
Journal
Electrochimica Acta
Quellenangaben
Volume: 365,
Article Number: 137326
Publisher
Elsevier
Publishing Place
The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, England
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
Grants
Helmholtz Association