Rabus, H.* ; Li, W.B. ; Villagrasa, C.* ; Schuemann, J.* ; Hepperle, P.A.* ; de la Fuente Rosales, L.* ; Beuve, M.* ; di Maria, S.* ; Klapproth, A. ; Li, C.Y.* ; Poignant, F.* ; Rudek, B.* ; Nettelbeck, H.*
Intercomparison of Monte Carlo calculated dose enhancement ratios for gold nanoparticles irradiated by X-rays: Assessing the uncertainty and correct methodology for extended beams.
Phys. Med. 84, 241-253 (2021)
Results of a Monte Carlo code intercomparison exercise for simulations of the dose enhancement from a gold nanoparticle (GNP) irradiated by X-rays have been recently reported. To highlight potential differences between codes, the dose enhancement ratios (DERs) were shown for the narrow-beam geometry used in the simulations, which leads to values significantly higher than unity over distances in the order of several tens of micrometers from the GNP surface. As it has come to our attention that the figures in our paper have given rise to misinterpretation as showing 'the' DERs of GNPs under diagnostic X-ray irradiation, this article presents estimates of the DERs that would have been obtained with realistic radiation field extensions and presence of secondary particle equilibrium (SPE). These DER values are much smaller than those for a narrow-beam irradiation shown in our paper, and significant dose enhancement is only found within a few hundred nanometers around the GNP. The approach used to obtain these estimates required the development of a methodology to identify and, where possible, correct results from simulations whose implementation deviated from the initial exercise definition. Based on this methodology, literature on Monte Carlo simulated DERs has been critically assessed.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Dose Enhancement ; Gold Nanoparticles ; Targeted Radiotherapy ; X-rays; Megavoltage Photons; Radiation-therapy; Radiotherapy; Energy; Simulation; Radiosensitization; Protons; Impact
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
HGF-reported in Year
2021
ISSN (print) / ISBN
1120-1797
e-ISSN
1724-191X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 84,
Issue: ,
Pages: 241-253
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, Oxon, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Radiation Sciences
PSP Element(s)
G-501391-001
Grants
National Cancer Institute
DFG
Copyright
Erfassungsdatum
2021-05-20