Marcazzan, S. ; Braz Carvalho, M.J.* ; Konrad, M.* ; Strangmann, J.* ; Tenditnaya, A. ; Baumeister, T.* ; Schmid, R.M.* ; Wester, H.J.* ; Ntziachristos, V. ; Gorpas, D. ; Wang, T.C.* ; Schottelius, M.* ; Quante, M.*
     
    
        
CXCR4 peptide-based fluorescence endoscopy in a mouse model of Barrett's esophagus.
    
    
        
    
    
        
        EJNMMI Res. 12:2 (2022)
    
    
    
      
      
	
	    BACKGROUND: Near-infrared (NIR) fluorescence imaging has been emerging as a promising strategy to overcome the high number of early esophageal adenocarcinomas missed by white light endoscopy and random biopsy collection. We performed a preclinical assessment of fluorescence imaging and endoscopy using a novel CXCR4-targeted fluorescent peptide ligand in the L2-IL1B mouse model of Barrett's esophagus. METHODS: Six L2-IL1B mice with advanced stage of disease (12-16 months old) were injected with the CXCR4-targeted, Sulfo-Cy5-labeled peptide (MK007), and ex vivo wide-field imaging of the whole stomach was performed 4 h after injection. Before ex vivo imaging, fluorescence endoscopy was performed in three L2-IL1B mice (12-14 months old)  by a novel imaging system with two L2-IL1B mice used as negative controls. RESULTS: Ex vivo imaging and endoscopy in L2-IL1B mice showed that the CXCR4-targeted MK007 accumulated mostly in the dysplastic lesions with a mean target-to-background ratio > 2. The detection of the Sulfo-Cy5 signal in dysplastic lesions and its co-localization with CXCR4 stained cells  by confocal microscopy further confirmed the imaging results. CONCLUSIONS: This preliminary preclinical study shows that CXCR4-targeted fluorescence endoscopy using MK007 can detect dysplastic lesions in a mouse model of Barrett's esophagus. Further investigations are needed to assess its use in the clinical setting.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Animal Models ; Barrett’s Esophagus ; Cxcr4 ; Dysplasia ; Endoscopy ; Esophageal Cancer ; Fluorescence Imaging ; Molecular Imaging ; Peptide; Cancer; Expression; Pet
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2022
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2022
    
 
    
    
        ISSN (print) / ISBN
        2191-219X
    
 
    
        e-ISSN
        2191-219X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 12,  
	    Issue: 1,  
	    Pages: ,  
	    Article Number: 2 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Springer
        
 
        
            Publishing Place
            One New York Plaza, Suite 4600, New York, Ny, United States
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-505500-001
    
 
    
        Grants
        Technische Universität München
Deutsche Forschungsgemeinschaft
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2022-05-30