NFE2L1-mediated proteasome function protects from ferroptosis.
Mol. Metab. 57:101436 (2022)
OBJECTIVE: Ferroptosis continues to emerge as a novel modality of cell death with important therapeutic implications for a variety of diseases, most notably cancer and degenerative diseases. While susceptibility, initiation, and execution of ferroptosis have been linked to reprogramming of cellular lipid metabolism, imbalances in iron-redox homeostasis, and aberrant mitochondrial respiration, the detailed mechanisms of ferroptosis are still insufficiently well understood. METHODS AND RESULTS: Here we show that diminished proteasome function is a new mechanistic feature of ferroptosis. The transcription factor nuclear factor erythroid-2, like-1 (NFE2L1) protects from ferroptosis by sustaining proteasomal activity. In cellular systems, loss of NFE2L1 reduced cellular viability after the induction of both chemically and genetically induced ferroptosis, which was linked to the regulation of proteasomal activity under these conditions. Importantly, this was reproduced in a Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) patient-derived cell line carrying mutated glutathione peroxidase-4 (GPX4), a critical regulator of ferroptosis. Also, reduced proteasomal activity was associated with ferroptosis in Gpx4-deficient mice. In a mouse model for genetic Nfe2l1 deficiency, we observed brown adipose tissue (BAT) involution, hyperubiquitination of ferroptosis regulators, including the GPX4 pathway, and other hallmarks of ferroptosis. CONCLUSION: Our data highlight the relevance of the NFE2L1-proteasome pathway in ferroptosis. Manipulation of NFE2L1 activity might enhance ferroptosis-inducing cancer therapies as well as protect from aberrant ferroptosis in neurodegeneration, general metabolism, and beyond.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Ferroptosis ; Gpx4 ; Brown Adipose Tissue ; Lipids ; Proteasome ; Ubiquitin
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
HGF-reported in Year
2022
ISSN (print) / ISBN
2212-8778
e-ISSN
2212-8778
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 57,
Issue: ,
Pages: ,
Article Number: 101436
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Amsterdam
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
90000 - German Center for Diabetes Research
30203 - Molecular Targets and Therapies
Research field(s)
Helmholtz Diabetes Center
Genetics and Epidemiology
PSP Element(s)
G-501900-251
G-506900-001
Grants
Horizon 2020
Liaoning Medical University
Ministry of Education and Science of the Russian Federation
Else Kroner-Fresenius-Stiftung
Deutsche Forschungsgemeinschaft
European Research Council
Deutsches Zentrum für Herz-Kreislaufforschung
Copyright
Erfassungsdatum
2022-05-30