PuSH - Publication Server of Helmholtz Zentrum München

Sigle, M.* ; Rohlfing, A.K.* ; Kenny, M.* ; Scheuermann, S.* ; Sun, N. ; Graeßner, U.* ; Haug, V.* ; Sudmann, J.* ; Seitz, C.M.* ; Heinzmann, D.* ; Schenke-Layland, K.* ; Maguire, P.B.* ; Walch, A.* ; Marzi, J.* ; Gawaz, M.P.*

Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution.

Nat. Commun. 14, 16:5799 (2023)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Spatial transcriptomics of histological sections have revolutionized research in life sciences and enabled unprecedented insights into genetic processes involved in tissue reorganization. However, in contrast to genomic analysis, the actual biomolecular composition of the sample has fallen behind, leaving a gap of potentially highly valuable information. Raman microspectroscopy provides untargeted spatiomolecular information at high resolution, capable of filling this gap. In this study we demonstrate spatially resolved Raman “spectromics” to reveal homogeneity, heterogeneity and dynamics of cell matrix on molecular levels by repurposing state-of-the-art bioinformatic analysis tools commonly used for transcriptomic analyses. By exploring sections of murine myocardial infarction and cardiac hypertrophy, we identify myocardial subclusters when spatially approaching the pathology, and define the surrounding metabolic and cellular (immune-) landscape. Our innovative, label-free, non-invasive “spectromics” approach could therefore open perspectives for a profound characterization of histological samples, while additionally allowing the combination with consecutive downstream analyses of the very same specimen.
Impact Factor
Scopus SNIP
Altmetric
16.600
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Myocardial-infarction; Secondary Structure; Neural-networks; Cells
Language english
Publication Year 2023
HGF-reported in Year 2023
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 14, Issue: 1, Pages: 16, Article Number: 5799 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-500390-001
Grants BMBF
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
State Ministry of Baden Wurttemberg for Economic Affairs, Labour and Housing Construction
Deutsche Forschungsgemeinschaft
Interdisciplinary Center for Clinical Research Tuebingen (IZKF) Doctoral Program
Scopus ID 85171654922
PubMed ID 37726278
Erfassungsdatum 2023-10-18