PuSH - Publication Server of Helmholtz Zentrum München

Gindra, R. ; Zheng, Y.* ; Green, E.J.* ; Reid, M.E.* ; Mazzilli, S.A.* ; Merrick, D.T.* ; Burks, E.J.* ; Kolachalama, V.B.* ; Beane, J.E.*

Graph perceiver network for lung tumor and bronchial premalignant lesion stratification from histopathology.

Am. J. Pathol. 194, 1285-1293 (2024)
Publ. Version/Full Text DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Bronchial premalignant lesions (PMLs) precede the development of invasive lung squamous carcinoma (LUSC), posing a significant challenge in distinguishing those likely to advance to LUSC from those that might regress without intervention. In this context, we present a novel computational approach, the Graph Perceiver Network (GRAPE-Net), leveraging hematoxylin and eosin (H&E) stained whole slide images (WSIs) to stratify endobronchial biopsies of PMLs across a spectrum from normal to tumor lung tissues. GRAPE-Net outperforms existing frameworks in classification accuracy predicting LUSC, lung adenocarcinoma (LUAD), and non-tumor (normal) lung tissue on The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets containing lung resection tissues while efficiently generating pathologist-aligned, class-specific heatmaps. The network was further tested using endobronchial biopsies from two data cohorts, containing normal to carcinoma in situ histology, and it demonstrated a unique capability to differentiate carcinoma in situ lung squamous PMLs based on their progression status to invasive carcinoma. The network may have utility in stratifying PMLs for chemoprevention trials or more aggressive follow-up.
Impact Factor
Scopus SNIP
Altmetric
4.700
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Lung Cancer ; Deep Learning ; Digital Pathology ; Premalignant Lesions
Language english
Publication Year 2024
HGF-reported in Year 2024
ISSN (print) / ISBN 0002-9440
e-ISSN 1525-2191
Quellenangaben Volume: 194, Issue: 7, Pages: 1285-1293 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Ste 800, 230 Park Ave, New York, Ny 10169 Usa
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-540007-001
Grants Karen Toffler Charitable Trust
Johnson &Johnson Enterprise Innovation, Inc.
American Heart Association
NIH
Scopus ID 85196007854
PubMed ID 38588853
Erfassungsdatum 2024-05-24