PuSH - Publication Server of Helmholtz Zentrum München

Ma, Y.* ; Nobile, F.* ; Marb, A. ; Dubrow, R.* ; Kinney, P.L.* ; Peters, A. ; Stafoggia, M.* ; Breitner-Busch, S. ; Chen, K.*

Air pollution changes due to COVID-19 lockdowns and attributable mortality changes in four countries.

Environ. Int. 187:108668 (2024)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
COVID-19 lockdowns reduced nitrogen dioxide (NO2) and fine particulate matter (PM2.5) emissions in many countries. We aim to quantify the changes in these pollutants and to assess the attributable changes in mortality in Jiangsu, China; California, U.S.; Central-southern Italy; and Germany during COVID-19 lockdowns in early 2020. Accounting for meteorological impacts and air pollution time trends, we use a machine learning-based meteorological normalization technique and the difference-in-differences approach to quantify the changes in NO2 and PM2.5 concentrations due to lockdowns. Using region-specific estimates of the association between air pollution and mortality derived from a causal modeling approach using data from 2015 to 2019, we assess the changes in mortality attributable to the air pollution changes caused by the lockdowns in early 2020. During the lockdowns, NO2 reductions avoided 1.41 (95% empirical confidence interval [eCI]: 0.94, 1.88), 0.44 (95% eCI: 0.17, 0.71), and 4.66 (95% eCI: 2.03, 7.44) deaths per 100,000 people in Jiangsu, China; California, U.S.; and Central-southern Italy, respectively. Mortality benefits attributable to PM2.5 reductions were also significant, albeit of a smaller magnitude. For Germany, the mortality benefits attributable to NO2 changes were not significant (0.11; 95% eCI: −0.03, 0.25), and an increase in PM2.5 concentrations was associated with an increase in mortality of 0.35 (95% eCI: 0.22, 0.48) deaths per 100,000 people during the lockdown. COVID-19 lockdowns overall improved air quality and brought attributable health benefits, especially associated with NO2 improvements, with notable heterogeneity across regions. This study underscores the importance of accounting for local characteristics when policymakers adapt successful emission control strategies from other regions.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Air Pollution ; Covid-19 ; Lockdown ; Mortality; Meteorological Normalization; Short-term; No2
ISSN (print) / ISBN 0160-4120
e-ISSN 1873-6750
Quellenangaben Volume: 187, Issue: , Pages: , Article Number: 108668 Supplement: ,
Publisher Elsevier
Publishing Place The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, England
Non-patent literature Publications
Reviewing status Peer reviewed
Grants US Environmental Protection Agency (EPA)
Health Effects Institute (HEI) Research Agreement