PuSH - Publication Server of Helmholtz Zentrum München

Drost, F. ; Dorigatti, E. ; Straub, A.* ; Hilgendorf, P.* ; Wagner, K.I.* ; Heyer, K.* ; López Montes, M.* ; Bischl, B.* ; Busch, D.H.* ; Schober, K.* ; Schubert, B.

Predicting T cell receptor functionality against mutant epitopes.

Cell Genom. 4:100634 (2024)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Cancer cells and pathogens can evade T cell receptors (TCRs) via mutations in immunogenic epitopes. TCR cross-reactivity (i.e., recognition of multiple epitopes with sequence similarities) can counteract such escape but may cause severe side effects in cell-based immunotherapies through targeting self-antigens. To predict the effect of epitope point mutations on T cell functionality, we here present the random forest-based model Predicting T Cell Epitope-Specific Activation against Mutant Versions (P-TEAM). P-TEAM was trained and tested on three datasets with TCR responses to single-amino-acid mutations of the model epitope SIINFEKL, the tumor neo-epitope VPSVWRSSL, and the human cytomegalovirus antigen NLVPMVATV, totaling 9,690 unique TCR-epitope interactions. P-TEAM was able to accurately classify T cell reactivities and quantitatively predict T cell functionalities for unobserved single-point mutations and unseen TCRs. Overall, P-TEAM provides an effective computational tool to study T cell responses against mutated epitopes.
Impact Factor
Scopus SNIP
Altmetric
11.100
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords T Cell Receptor ; Tcr-epitope Prediction ; Active Learning ; Cross-reactivity ; Deep Mutational Scan ; Epitope ; Machine Learning ; Mutation; Peptide; Deconvolution; Accuracy; Complex
Language english
Publication Year 2024
HGF-reported in Year 2024
ISSN (print) / ISBN 2666-979X
e-ISSN 2666-979X
Journal Cell Genomics
Quellenangaben Volume: 4, Issue: 9, Pages: , Article Number: 100634 Supplement: ,
Publisher Elsevier
Publishing Place Radarweg 29, 1043 Nx Amsterdam, Netherlands
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
Grants Else Kroner-Stiftung
Deutsche Forschungsgemeinschaft (DFG)
BMBF
Joachim Herz Stiftung
Helmholtz Association
Scopus ID 85203131023
PubMed ID 39151427
Erfassungsdatum 2024-10-01