PuSH - Publication Server of Helmholtz Zentrum München

Halama, A.* ; Zaghlool, S.* ; Thareja, G.* ; Kader, S.* ; Al Muftah, W.A.* ; Mook-Kanamori, M.J.* ; Sarwath, H.* ; Mohamoud, Y.A.* ; Stephan, N.* ; Ameling, S.* ; Pucic Baković, M.* ; Krumsiek, J.* ; Prehn, C. ; Adamski, J. ; Schwenk, J.M.* ; Friedrich, N.* ; Völker, U.* ; Wuhrer, M.* ; Lauc, G.* ; Najafi-Shoushtari, S.H.* ; Malek, J.A.* ; Graumann, J.* ; Mook-Kanamori, D.* ; Schmidt, F.* ; Suhre, K.*

A roadmap to the molecular human linking multiomics with population traits and diabetes subtypes.

Nat. Commun. 15:7111 (2024)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations. Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays "The Molecular Human". We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data. Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to "The Molecular Human" ( http://comics.metabolomix.com ), providing interactive data exploration and hypotheses generation possibilities.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Dna Methylation; Association; Insulin; Urine; Blood; Database; Serum; Identification; Glycosylation; Translation
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 15, Issue: 1, Pages: , Article Number: 7111 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Non-patent literature Publications
Reviewing status Peer reviewed
Grants Qatar National Research Fund (QNRF)
Biomedical Research Program at Weill Cornell Medicine in Qatar - Qatar Foundation
Doha, Qatar