PuSH - Publication Server of Helmholtz Zentrum München

Greco, A.* ; Moser, J. ; Preissl, H. ; Siegel, M.*

Predictive learning shapes the representational geometry of the human brain.

Nat. Commun. 15:9670 (2024)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Predictive coding theories propose that the brain constantly updates internal models to minimize prediction errors and optimize sensory processing. However, the neural mechanisms that link prediction error encoding and optimization of sensory representations remain unclear. Here, we provide evidence how predictive learning shapes the representational geometry of the human brain. We recorded magnetoencephalography (MEG) in humans listening to acoustic sequences with different levels of regularity. We found that the brain aligns its representational geometry to match the statistical structure of the sensory inputs, by clustering temporally contiguous and predictable stimuli. Crucially, the magnitude of this representational shift correlates with the synergistic encoding of prediction errors in a network of high-level and sensory areas. Our findings suggest that, in response to the statistical regularities of the environment, large-scale neural interactions engaged in predictive processing modulate the representational content of sensory areas to enhance sensory processing.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 15, Issue: 1, Pages: , Article Number: 9670 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Non-patent literature Publications
Reviewing status Peer reviewed