PuSH - Publication Server of Helmholtz Zentrum München

Philipps, M.* ; Körner, A.* ; Vanhoefer, J.* ; Pathirana, D.* ; Hasenauer, J.

Non-negative universal differential equations with applications in systems biology.

In: (10th IFAC Conference on Foundations of Systems Biology in Engineering, FOSBE 2024, 8-11 September 2024, Corfu Island). Frankfurt ; München [u.a.]: Elsevier, 2024. 25-30 (IFAC PapersOnline ; 58)
Publ. Version/Full Text DOI
Free by publisher
Universal differential equations (UDEs) leverage the respective advantages of mechanistic models and artificial neural networks and combine them into one dynamic model. However, these hybrid models can suffer from unrealistic solutions, such as negative values for biochemical quantities. We present non-negative UDE (nUDEs), a constrained UDE variant that guarantees non-negative values. Furthermore, we explore regularisation techniques to improve generalisation and interpretability of UDEs.
Altmetric
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Conference contribution
Keywords Kinetic Modelling And Control Of Biological Systems ; Neural Networks ; Parameter And State Estimation ; Parametric Optimization ; Systems Biology; Networks
Language english
Publication Year 2024
HGF-reported in Year 2024
ISSN (print) / ISBN 2405-8963
e-ISSN 1474-6670
Conference Title 10th IFAC Conference on Foundations of Systems Biology in Engineering, FOSBE 2024
Conference Date 8-11 September 2024
Conference Location Corfu Island
Quellenangaben Volume: 58, Issue: 23, Pages: 25-30 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Frankfurt ; München [u.a.]
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-553800-001
Grants University of Bonn
German Federal Ministry of Education and Research (BMBF) under the CompLS program (GENImmune)
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy
Scopus ID 85208532569
Erfassungsdatum 2024-11-19