Petric, V.* ; Hussain, H.* ; Casni, K.* ; Vuckovic, M.* ; Schopper, A.* ; Andrijic, Z.U.* ; Kecorius, S. ; Madueno, L.* ; Kern, R.* ; Lovrić, M.*
Ensemble machine learning, deep learning, and time series forecasting: Improving prediction accuracy for hourly concentrations of ambient air pollutants.
Aerosol Air Qual. Res. 24:230317 (2024)
This study aims to improve the generalisation capabilities of machine learning models for modelling hourly air pollutant concentrations in scenarios where access to high-quality data is limited. A diverse set of techniques was implemented to tackle this challenge, encompassing the utilisation of the prophet, random forest, and three different deep learning architectures: long short-term memory networks, convolutional neural networks, and multilayer perceptrons. A hybrid model of random forest and prophet was also tested. The role of the hybrid model was to combine the forecasting strengths of the Prophet model with the predictive power of the Random Forest model to better capture complex temporal patterns in the data. After testing, the hybrid model demonstrated improved generalization capabilities, achieving statistically significant improvements in R 2 for hourly concentrations of NO (improving by 26%), NO2 (enhancing by 18%), PM10 (with changes ranging from an 8% decline to a 35% improvement), and O3 (showcasing R 2 coefficients ranging from 0.83 to 0.87) at five sites in Graz, Austria. The utilisation of surface atmospheric ERA5-Land datasets within the models as model features showed high feature post hoc importance in the best (hybrid) models per pollutant and site. Furthermore, error analysis was performed to understand better the conditions under which these models might fail. The results showed that despite the expectations for models to fail with an increasing timeframe (the test set) from March 2019 to March 2020, the models were sufficiently stable for long-term prediction and thus can be used to forecast and predict air pollution.
Altmetric
Additional Metrics?
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Corresponding Author
Keywords
Prophet; Ozone; Air pollution; LSTM; CNN; Random forests; Pollution; Ozone; Model
Keywords plus
ISSN (print) / ISBN
1680-8584
e-ISSN
2071-1409
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 24,
Issue: 12,
Pages: ,
Article Number: 230317
Supplement: ,
Series
Publisher
Tainan
Publishing Place
Chaoyang Univ Tech, Dept Env Eng & Mgmt, Prod Ctr Aaqr, No 168, Jifong E Rd, Wufong Township, Taichung County, 41349, Taiwan
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Institute of Epidemiology (EPI)
Grants
BMK
BMAW
Province Styria
Province Vienna
Province Tyrol