Effects of novel P fertilizers on microbial abundance related to N and P cycling in two on-farm systems.
Agric. Ecosyst. Environ. 385:109565 (2025)
Phosphorus (P) is an essential macronutrient element for plant growth and development. Its limited availability makes alternative P sources crucial for fertilizer production. This study investigated the effects of three recycling-derived fertilizers with varying P solubility on microbial nutrient turnover at two fields in central Germany, Kiebitzbreite and Schmatzfelder Breite, which differ in management practices and soil characteristics. Samples were collected during the stem elongation stage of winter wheat from bulk soil and rhizosphere. Fertilization treatments included traditional triple superphosphate (TSP) and a no-P control (P0) for comparison. The abundance of microorganisms involved in P and Nitrogen (N) turnover was assessed by quantitative real-time PCR. Potential acid and alkaline phosphatase activity, mycorrhizal colonization rate, Carbon (C) to P, N to P ratios in the soil and the plant, and water-extractable P were measured. Although all treatments received the same amount of P, the differing solubilities of the fertilizers significantly affected water-extractable P levels, while nutrient ratios in the plant biomass remained comparable among sites and fertilizer treatments. However, the microbial strategies for maintaining P levels varied significantly across the sites. At the Kiebitzbreite, the site with silty loam texture and deep plowing, high ratios of available C and N to P in the soil were accompanied by high alkaline phosphatase activity and a larger abundance of arbuscular mycorrhizal fungi in the rhizosphere. Conversely, P solubilization was more pronounced at Schmatzfelder Breite, a site with finer soil texture managed by deep chiseling. Notably, the fertilization treatments influenced not only the abundance of bacteria catalyzing P turnover but also those catalyzing major steps of the N cycle, especially at Schmatzfelder Breite, where higher P solubility led to increased bacteria involved in N mineralization. This non-targeted effect on N cycling underscores the importance of fertilizer type, beyond just P supply, in influencing broader nutrient turnover dynamics. Our findings suggest that recycling-derived P fertilizers are promising alternatives to conventional P sources, though their on-farm impacts on microbial nutrient turnover vary significantly with site conditions and management.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Microbial Nutrient Turnover ; On-farm Trials ; Recycled P Fertilizers ; Soil Nutrient Stoichiometry; Arbuscular Mycorrhizal Fungi; Phosphorus; Soil; Nitrogen; Plant; Rhizosphere; Diversity; Phosphate; Ammonia; Forest
Keywords plus
Language
english
Publication Year
2025
Prepublished in Year
0
HGF-reported in Year
2025
ISSN (print) / ISBN
0167-8809
e-ISSN
1873-2305
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 385,
Issue: ,
Pages: ,
Article Number: 109565
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504700-001
Grants
German Federal Ministry of Education and Research (BMBF) as part of the project InnoSoilPhos
Copyright
Erfassungsdatum
2025-05-06