Yin, H.* ; Liu, T.* ; Wu, D.* ; Li, X.* ; Li, G.* ; Song, W.* ; Wang, X.* ; Xin, S. ; Liu, Y.* ; Pan, J.*
     
    
        
Exploring FAM13A-N-Myc interactions to uncover potential targets in MYCN-amplified neuroblastoma: A study of protein interactions and molecular dynamics simulations.
    
    
        
    
    
        
        BMC Cancer 25:470 (2025)
    
    
    
      
      
	
	    Neuroblastoma (NB), a common infantile neuroendocrine tumor, presents a substantial therapeutic challenge when MYCN is amplified. Given that the protein structure of N-Myc is disordered, we utilized Alphafold for prediction and GROMACS for optimization of the N-Myc structure, thereby improving the reliability of the predicted structure. The publicly available datasets GSE49710 and GSE73517 were adopted, which contain the transcriptome data of clinical samples from 598 NB patients. Through various machine learning algorithms, FAM13A was identified as a characteristic gene of MYCN. Cell functional experiments, including those on cell proliferation, apoptosis, and cell cycle, also indicate that FAM13A is a potential risk factor. Additionally, Alphafold and GROMACS were employed to predict and optimize the structure of FAM13A. Protein-protein docking and molecular dynamic modeling techniques were then used to validate the enhanced protein stability resulting from the interaction between N-Myc and FAM13A. Consequently, targeting FAM13A holds the potential to reduce the stability of N-Myc, hinder the proliferation of NB cells, and increase the infiltration of immune cells. This multi-faceted approach effectively combats tumor cells, making FAM13A a prospective therapeutic target for MYCN-amplified NB.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Immune Cell Infiltration ; Mycn ; Neuroblastoma ; Protein Structure Prediction ; Protein–protein Docking ; Single Cell Transcriptomes
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2025
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2025
    
 
    
    
        ISSN (print) / ISBN
        1471-2407
    
 
    
        e-ISSN
        1471-2407
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 25,  
	    Issue: 1,  
	    Pages: ,  
	    Article Number: 470 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            BioMed Central
        
 
        
            Publishing Place
            Campus, 4 Crinan St, London N1 9xw, England
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Research Unit Signaling and Translation (SAT)
    
 
    
        POF-Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-509800-005
    
 
    
        Grants
        National Natural Science Foundation
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2025-05-07