PuSH - Publication Server of Helmholtz Zentrum München

Salas, S.M. ; Kuemmerle, L. ; Mattsson-Langseth, C.* ; Tismeyer, S.* ; Avenel, C.* ; Hu, T.* ; Rehmann, H. ; Grillo, M.* ; Czarnewski, P.* ; Helgadottir, S.* ; Tiklova, K.* ; Andersson, A.* ; Rafati, N.* ; Chatzinikolaou, M.* ; Theis, F.J. ; Luecken, M. ; Wählby, C.* ; Ishaque, N.* ; Nilsson, M.*

Optimizing Xenium In Situ data utility by quality assessment and best-practice analysis workflows.

Nat. Methods 22, 813-823 (2025)
Publ. Version/Full Text Research data DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
The Xenium In Situ platform is a new spatial transcriptomics product commercialized by 10x Genomics, capable of mapping hundreds of genes in situ at subcellular resolution. Given the multitude of commercially available spatial transcriptomics technologies, recommendations in choice of platform and analysis guidelines are increasingly important. Herein, we explore 25 Xenium datasets generated from multiple tissues and species, comparing scalability, resolution, data quality, capacities and limitations with eight other spatially resolved transcriptomics technologies and commercial platforms. In addition, we benchmark the performance of multiple open-source computational tools, when applied to Xenium datasets, in tasks including preprocessing, cell segmentation, selection of spatially variable features and domain identification. This study serves as an independent analysis of the performance of Xenium, and provides best practices and recommendations for analysis of such datasets.
Impact Factor
Scopus SNIP
Altmetric
32.100
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Transcriptomic Cell-types; Gene-expression
Language english
Publication Year 2025
HGF-reported in Year 2025
ISSN (print) / ISBN 1548-7091
e-ISSN 1548-7105
Journal Nature Methods
Quellenangaben Volume: 22, Issue: 4, Pages: 813-823 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place New York, NY
Reviewing status Peer reviewed
Institute(s) Institute of Computational Biology (ICB)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
Institute of Lung Health and Immunity (LHI)
POF-Topic(s) 30205 - Bioengineering and Digital Health
80000 - German Center for Lung Research
Research field(s) Enabling and Novel Technologies
Lung Research
PSP Element(s) G-503800-001
G-505800-001
G-501800-833
Grants Bundesministerium fr Bildung und Forschung (Federal Ministry of Education and Research)
PubMed ID 40082609
Erfassungsdatum 2025-05-08