Alves, F.* ; Lane, D.* ; Wahida, A. ; Jakaria, M.* ; Kalinowski, P.* ; Southon, A.* ; Belaidi, A.A.* ; Samperi-Esteve, T.* ; Nguyen, T.P.M.* ; Lei, P.* ; Krueger, M.* ; Mueller, S.* ; Conrad, M. ; Agarwal, P.* ; Leurgans, S.E.* ; Schneider, J.* ; Bush, A.I.* ; Ayton, S.*
     
    
        
Aberrant mitochondrial metabolism in Alzheimer's disease links energy stress with ferroptosis.
    
    
        
    
    
        
        Adv. Sci., DOI: 10.1002/advs.202504175:e04175 (2025)
    
    
    
      
      
	
	    Alzheimer's disease (AD) is defined by β-amyloid plaques and tau-containing neurofibrillary tangles, but the ensuing cellular derangements that culminate in neurodegeneration remain elusive. Here, a mechanistic link between two AD pathophysiological hallmarks: energy insufficiency and oxidative stress is revealed. It is demonstrated that mitochondrial function and glutathione (GSH) flux are coupled, impacting neuronal ferroptosis susceptibility. Analysis of proteomic data from the inferior temporal cortex of 625 subjects along a continuum of clinical and pathological changes in AD, reveals a prominent depletion of mitochondrial proteins. Biogenetic insufficiency in AD is reflected by a concurrent loss of GSH, which requires 2 ATP for its synthesis, and genetic and pharmacologic ATP depletion models confirm that ATP is rate-limiting for GSH. Accordingly, an unbiased association analysis uncovers mitochondrial proteins in positive correlation with total GSH (t-GSH) in AD subjects. But mitochondria also consume GSH via the SLC25A39 transporter. It is found that mitochondrial inhibition either increases or decreases ferroptosis susceptibility in cellular models, depending on contextual factors that dictate whether mitochondria act as a net GSH producer or consumer, respectively. Mitochondria therefore control GSH flux, and loss of energy output is consequently demonstrated as a liability for ferroptosis in AD.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Atp ; Alzheimer's Disease ; Bioenergetics ; Ferroptosis ; Glutathione ; Mitochondria ; Neurodegeneration; Cognitive Impairment; Rush Memory; Glutathione; Brain; Iron; Homeostasis; Reveals
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2025
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2025
    
 
    
    
        ISSN (print) / ISBN
        2198-3844
    
 
    
        e-ISSN
        2198-3844
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: ,  
	    Issue: ,  
	    Pages: ,  
	    Article Number: e04175 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Wiley
        
 
        
            Publishing Place
            Weinheim
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Genetics and Epidemiology
    
 
    
        PSP Element(s)
        G-506900-001
    
 
    
        Grants
        
Operational Infrastructure Support Grant
Victorian Government
National Institute of Aging
National Health and Medical Research Council
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2025-07-16