Benchmarking scRNA-seq copy number variation callers.
Nat. Commun. 16:8777 (2025)
Copy number variations (CNVs), the gain or loss of genomic regions, are associated with disease, especially cancer. Single cell technologies offer new possibilities to capture within-sample heterogeneity of CNVs and identify subclones relevant for tumor progression and treatment outcome. Several computational tools have been developed to identify CNVs from scRNA-seq data. However, an independent benchmarking of them is lacking. Here, we evaluate six popular methods in their ability to correctly identify ground truth CNVs, euploid cells and subclonal structures in 21 scRNA-seq datasets. We discover dataset-specific factors influencing the performance, including dataset size, the number and type of CNVs in the sample and the choice of the reference dataset. Methods which include allelic information perform more robustly for large droplet-based datasets, but require higher runtime. Furthermore, the methods differ in their additional functionalities. We offer a benchmarking pipeline to identify the optimal method for new datasets, and improve methods' performance.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Read Alignment; Framework; Aberrations; Oncogene; Toolkit
Keywords plus
Language
english
Publication Year
2025
Prepublished in Year
0
HGF-reported in Year
2025
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 16,
Issue: 1,
Pages: ,
Article Number: 8777
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-554200-001
G-503800-001
Grants
Dutch Cancer Society
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Deutsche Forschungsgemeinschaft (German Research Foundation)
Copyright
Erfassungsdatum
2025-10-23