PuSH - Publication Server of Helmholtz Zentrum München

Su, J.* ; Li, Z.* ; Tao, T.* ; Han, C.* ; He, Y.* ; Dai, F.* ; Yuan, Q.* ; Gao, Y.* ; Si, T.* ; Zhang, X.* ; Zhou, Y.* ; Shan, J.* ; Zhou, X.* ; Chang, X.* ; Jiang, S.* ; Ma, D.* ; Steinegger, M.* ; Ovchinnikov, S.* ; Yuan, F.* ; The OPMC (Heinzinger, M.)

Democratizing protein language model training, sharing and collaboration.

Nat. Biotechnol., DOI: 10.1038/s41587-025-02859-7 (2025)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Training and deploying large-scale protein language models typically requires deep machine learning expertise-a barrier for researchers outside this field. SaprotHub overcomes this challenge by offering an intuitive platform that facilitates training and prediction as well as storage and sharing of models. Here we provide the ColabSaprot framework built on Google Colab, which potentially powers hundreds of protein training and prediction applications, enabling researchers to collaboratively build and share customized models.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
ISSN (print) / ISBN 1087-0156
e-ISSN 1546-1696
Publisher Nature Publishing Group
Publishing Place New York, NY
Reviewing status Peer reviewed