PuSH - Publication Server of Helmholtz Zentrum München

Su, J.* ; Li, Z.* ; Tao, T.* ; Han, C.* ; He, Y.* ; Dai, F.* ; Yuan, Q.* ; Gao, Y.* ; Si, T.* ; Zhang, X.* ; Zhou, Y.* ; Shan, J.* ; Zhou, X.* ; Chang, X.* ; Jiang, S.* ; Ma, D.* ; Steinegger, M.* ; Ovchinnikov, S.* ; Yuan, F.* ; The OPMC (Heinzinger, M.)

Democratizing protein language model training, sharing and collaboration.

Nat. Biotechnol., DOI: 10.1038/s41587-025-02859-7 (2025)
Publ. Version/Full Text Research data DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Training and deploying large-scale protein language models typically requires deep machine learning expertise-a barrier for researchers outside this field. SaprotHub overcomes this challenge by offering an intuitive platform that facilitates training and prediction as well as storage and sharing of models. Here we provide the ColabSaprot framework built on Google Colab, which potentially powers hundreds of protein training and prediction applications, enabling researchers to collaboratively build and share customized models.
Impact Factor
Scopus SNIP
Altmetric
41.700
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2025
HGF-reported in Year 2025
ISSN (print) / ISBN 1087-0156
e-ISSN 1546-1696
Publisher Nature Publishing Group
Publishing Place New York, NY
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-010
PubMed ID 41136773
Erfassungsdatum 2025-10-28