PuSH - Publication Server of Helmholtz Zentrum München

Ebeid, C.* ; Rump, A. ; Tian, C. ; Mamidi, A.* ; de Arcangelis, A.* ; Gradwohl, G.* ; Semb, H.

Extracellular matrix-driven metabolic control of pancreatic endocrine lineage allocation.

EMBO Rep., 28 (2025)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The mechanical and metabolic states of progenitor and stem cells are emerging as key regulators of cell fate decisions. Lineage specification of pancreatic endocrine cells is promoted by reduced mechanical tension in vitro, but the underlying mechanism is poorly understood. Here, we show that heterogeneously deposited low-adhesion extracellular matrix (ECM) components, such as the laminin isoform LN411, trigger a local "soft" environment by broadly reducing the expression of integrins. Mimicking this low-tension state by in vitro knockdown and in vivo gene targeting of the LN-binding integrins Itga3 and Itga6 reveal their importance in inducing endocrinogenesis. Unexpectedly, the cell responds to this change in tensile forces by engaging a major metabolic enzyme, PDK4, to execute the resulting cell fate decision. PDK4 achieves this through two distinct mechanisms: a non-canonical action controlling YAP activity and a canonical metabolic function maintaining PDX1 expression. In sum, we believe our findings have broad relevance for how local changes in mechanical tension governs cell behaviour in many developmental and disease contexts.
Impact Factor
Scopus SNIP
Altmetric
6.200
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Laminin-411 ; Mechanotransduction ; Pdk4 ; Pancreatic Endocrinogenesis ; Yap Signalling; Pluripotent Stem-cells; Differentiation; Fate; Pdx1; Transcription; Reveals; Network; Yap; Organogenesis; Expression
Language english
Publication Year 2025
HGF-reported in Year 2025
ISSN (print) / ISBN 1469-221X
e-ISSN 1469-3178
Journal EMBO Reports
Quellenangaben Volume: , Issue: , Pages: 28 Article Number: , Supplement: ,
Publisher EMBO Press
Publishing Place Campus, 4 Crinan St, London, N1 9xw, England
Reviewing status Peer reviewed
POF-Topic(s) 30201 - Metabolic Health
Research field(s) Helmholtz Diabetes Center
PSP Element(s) G-506800-001
Grants European Union
Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)
Helmholtz Zentrum Munchen
Scopus ID 105019979487
PubMed ID 41145874
Erfassungsdatum 2025-10-29