PuSH - Publication Server of Helmholtz Zentrum München

Mathes, S.* ; Ferber, D.* ; Dreyer, T.* ; Borm, K.J.* ; Modersohn, L.* ; Willem, T. ; Dirven, R.* ; Vibert, J.* ; Kreutzfeldt, S.* ; Perez-Lopez, R.* ; Prelaj, A.* ; Strand, F.* ; Baird, R.D.* ; Boeker, M.* ; Kather, J.N.* ; Tschochohei, M.* ; Lammert, J.*

Collaborative framework on responsible AI in LLM-driven CDSS for precision oncology leveraging real-world patient data.

npj Precis. Oncol. 10:15 (2025)
Publ. Version/Full Text Postprint Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Precision oncology leverages real-world data, essential for identifying biomarkers and therapies. Large language models (LLMs) can aid at structuring unstructured data, overcoming current bottlenecks in precision oncology. We propose a framework for responsible LLM integration into precision oncology, co-developed by multidisciplinary experts and supported by Cancer Core Europe. Five thematic dimensions and ten principles for practice are outlined and illustrated through application to uterine carcinosarcoma in a thought experiment.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Artificial-intelligence
ISSN (print) / ISBN 2397-768X
e-ISSN 2397-768X
Quellenangaben Volume: 10, Issue: 1, Pages: , Article Number: 15 Supplement: ,
Publisher Springer
Publishing Place Heidelberger Platz 3, Berlin, 14197, Germany
Reviewing status Peer reviewed
Grants Projekt DEAL