PuSH - Publication Server of Helmholtz Zentrum München

Prade, V.M. ; Sun, N. ; Shen, J. ; Feuchtinger, A. ; Kunzke, T. ; Buck, A. ; Schraml, P.* ; Moch, H.* ; Schwamborn, K.* ; Autenrieth, M.* ; Gschwend, J.E.* ; Erlmeier, F.* ; Hartmann, A.* ; Walch, A.K.

The synergism of spatial metabolomics and morphometry improves machine learning-based renal tumour subtype classification.

Clin. Transl. Med. 12:e666 (2022)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Impact Factor
Scopus SNIP
Altmetric
8.554
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Machine Learning ; Mass Spectrometry Imaging ; Metabolomics ; Morphometry ; Renal Cell Carcinoma ; Tumour Of The Kidney ; Tumour Subtyping; Imaging Mass-spectrometry; Cell Carcinoma; Oncocytoma
Language english
Publication Year 2022
HGF-reported in Year 2022
ISSN (print) / ISBN 2001-1326
e-ISSN 2001-1326
Quellenangaben Volume: 12, Issue: 2, Pages: , Article Number: e666 Supplement: ,
Publisher Springer
Publishing Place The Atrium, Southern Gate, Chichester Po19 8sq, W Sussex, England
Reviewing status Peer reviewed
Institute(s) Research Unit Analytical Pathology (AAP)
CF Pathology & Tissue Analytics (CF-PTA)
POF-Topic(s) 30205 - Bioengineering and Digital Health
30505 - New Technologies for Biomedical Discoveries
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-500390-001
A-630600-001
Grants Impulse and Networking Fund of the Helmholtz Association and the Helmholtz Zentrum München
Deutsche Forschungsgemeinschaft
PubMed ID 35184396
Erfassungsdatum 2022-05-04