Prade, V.M. ; Sun, N. ; Shen, J. ; Feuchtinger, A. ; Kunzke, T. ; Buck, A. ; Schraml, P.* ; Moch, H.* ; Schwamborn, K.* ; Autenrieth, M.* ; Gschwend, J.E.* ; Erlmeier, F.* ; Hartmann, A.* ; Walch, A.K.
The synergism of spatial metabolomics and morphometry improves machine learning-based renal tumour subtype classification.
Clin. Transl. Med. 12:e666 (2022)
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Machine Learning ; Mass Spectrometry Imaging ; Metabolomics ; Morphometry ; Renal Cell Carcinoma ; Tumour Of The Kidney ; Tumour Subtyping; Imaging Mass-spectrometry; Cell Carcinoma; Oncocytoma
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
HGF-reported in Year
2022
ISSN (print) / ISBN
2001-1326
e-ISSN
2001-1326
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 12,
Issue: 2,
Pages: ,
Article Number: e666
Supplement: ,
Series
Publisher
Springer
Publishing Place
The Atrium, Southern Gate, Chichester Po19 8sq, W Sussex, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
30505 - New Technologies for Biomedical Discoveries
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-500390-001
A-630600-001
Grants
Impulse and Networking Fund of the Helmholtz Association and the Helmholtz Zentrum München
Deutsche Forschungsgemeinschaft
Copyright
Erfassungsdatum
2022-05-04