High-resolution spatiotemporal modeling of daily near-surface air temperature in Germany over the period 2000–2020.
Environ. Res. 219:115062 (2023)
The commonly used weather stations cannot fully capture the spatiotemporal variability of near-surface air temperature (Tair), leading to exposure misclassification and biased health effect estimates. We aimed to improve the spatiotemporal coverage of Tair data in Germany by using multi-stage modeling to estimate daily 1 × 1 km minimum (Tmin), mean (Tmean), maximum (Tmax) Tair and diurnal Tair range during 2000–2020. We used weather station Tair observations, satellite-based land surface temperature (LST), elevation, vegetation and various land use predictors. In the first stage, we built a linear mixed model with daily random intercepts and slopes for LST adjusted for several spatial predictors to estimate Tair from cells with both Tair and LST available. In the second stage, we used this model to predict Tair for cells with only LST available. In the third stage, we regressed the second stage predictions against interpolated Tair values to obtain Tair countrywide. All models achieved high accuracy (0.91 ≤ R2 ≤ 0.98) and low errors (1.03 °C ≤ Root Mean Square Error (RMSE) ≤ 2.02 °C). Validation with external data confirmed the good performance, locally, i.e., in Augsburg for all models (0.74 ≤ R2 ≤ 0.99, 0.87 °C ≤ RMSE ≤ 2.05 °C) and countrywide, for the Tmean model (0.71 ≤ R2 ≤ 0.99, 0.79 °C ≤ RMSE ≤ 1.19 °C). Annual Tmean averages ranged from 8.56 °C to 10.42 °C with the years beyond 2016 being constantly hotter than the 21-year average. The spatial variability within Germany exceeded 15 °C annually on average following patterns including mountains, rivers and urbanization. Using a case study, we showed that modeling leads to broader Tair variability representation for exposure assessment of participants in health cohorts. Our results indicate the proposed models as suitable for estimating nationwide Tair at high resolution. Our product is critical for temperature-based epidemiological studies and is also available for other research purposes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Environmental Epidemiology ; Exposure Assessment ; Land Surface Temperature ; Near-surface Air Temperature ; Spatiotemporal Modeling ; Validation; NAKO, Exposure Assessment
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
2022
HGF-reported in Year
2022
ISSN (print) / ISBN
0013-9351
e-ISSN
1096-0953
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 219,
Issue: ,
Pages: ,
Article Number: 115062
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
San Diego, Calif.
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Institute of Epidemiology (EPI)
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-504000-001
G-504000-010
Grants
Helmholtz Association
Helmholtz Climate Initiative
HI-CAM
Copyright
Erfassungsdatum
2023-01-11