PuSH - Publikationsserver des Helmholtz Zentrums München

On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies.

BMC Bioinformatics 13:120 (2012)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
ABSTRACT: BACKGROUND: Genome-wide association studies (GWAS) with metabolic traits and metabolome-wide association studies (MWAS) with traits of biomedical relevance are powerful tools to identify the contribution of genetic, environmental and lifestyle factors to the etiology of complex diseases. Hypothesis-free testing of ratios between all possible metabolite pairs in GWAS and MWAS has proven to be an innovative approach in the discovery of new biologically meaningful associations. The p-gain statistic was introduced as an ad-hoc measure to determine whether a ratio between two metabolite concentrations carries more information than the two corresponding metabolite concentrations alone. So far, only a rule of thumb was applied to determine the significance of the p-gain. RESULTS: Here we explore the statistical properties of the p-gain through simulation of its density and by sampling of experimental data. We derive critical values of the p-gain for different levels of correlation between metabolite pairs and show that B/(2*alpha) is a conservative critical value for the p-gain, where alpha is the level of significance and B the number of tested metabolite pairs. CONCLUSIONS: We show that the p-gain is a well defined measure that can be used to identify statistically significant metabolite ratios in association studies and provide a conservative significance cut-off for the p-gain for use in future association studies with metabolic traits.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.751
0.000
62
70
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter p-gain, Metabolomics, MWAS, GWAS, Genome-wide association studies, Metabolome-wide association studies; Targeted Metabolomics ; Identification ; Phenotypes ; Spectrum ; Kora
Sprache englisch
Veröffentlichungsjahr 2012
HGF-Berichtsjahr 2012
ISSN (print) / ISBN 1471-2105
e-ISSN 1471-2105
Zeitschrift BMC Bioinformatics
Quellenangaben Band: 13, Heft: 1, Seiten: , Artikelnummer: 120 Supplement: ,
Verlag BioMed Central
Begutachtungsstatus Peer reviewed
POF Topic(s) 30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
30505 - New Technologies for Biomedical Discoveries
30503 - Chronic Diseases of the Lung and Allergies
30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e) G-504100-001
G-503700-004
G-503700-001
G-503900-001
G-504090-001
PubMed ID 22672667
Scopus ID 84861810217
Erfassungsdatum 2012-10-19