PuSH - Publikationsserver des Helmholtz Zentrums München

Schurmann, C.* ; Heim, K. ; Schillert, A.* ; Blankenberg, S.* ; Carstensen, M.* ; Dörr, M.* ; Endlich, K.* ; Felix, S.B.* ; Gieger, C. ; Grallert, H. ; Herder, C.* ; Hoffmann, W. ; Homuth, G.* ; Illig, T. ; Kruppa, J.* ; Meitinger, T. ; Müller, C.* ; Nauck, M.* ; Peters, A. ; Rettig, R.* ; Roden, M.* ; Strauch, K. ; Völker, U.* ; Völzke, H.* ; Wahl, S. ; Wallaschofski, H.* ; Wild, P.S.* ; Zeller, T.* ; Teumer, A.* ; Prokisch, H. ; Ziegler, A.*

Analyzing illumina gene expression microarray data from different tissues: Methodological aspects of data analysis in the MetaXpress consortium.

PLoS ONE 7:e50938 (2012)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip array. Gene expression signal intensities were similar after applying the log(2) or the variance-stabilizing transformation. In all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially influenced signal intensity values, especially the Illumina chip assignment (33-48% of the variance), the RNA amplification batch (12-24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation and RNA isolation for the whole blood cell samples (2-3%), and the time between RNA isolation and amplification for the monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the expression signal intensities in the whole blood cell samples (3%), followed by sex (1-2%) in both sample types. Known single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included common SNPs (minor allele frequency >5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific expression signals (Bonferroni corrected p-value<0.05), but in almost half of these events the signal intensities were even increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on hybridization efficiency. In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.092
0.000
55
55
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Breast-cancer ; Genome Browser ; Metaanalysis ; Profiles ; Population ; Signature ; Survival ; Risk ; Classification ; Information
Sprache englisch
Veröffentlichungsjahr 2012
HGF-Berichtsjahr 2012
ISSN (print) / ISBN 1932-6203
Zeitschrift PLoS ONE
Quellenangaben Band: 7, Heft: 12, Seiten: , Artikelnummer: e50938 Supplement: ,
Verlag Public Library of Science (PLoS)
Verlagsort Lawrence, Kan.
Begutachtungsstatus Peer reviewed
POF Topic(s) 30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-500700-001
G-504100-001
G-504200-002
G-504000-002
G-504200-003
PubMed ID 23236413
Scopus ID 84870895128
Erfassungsdatum 2012-12-31