PuSH - Publikationsserver des Helmholtz Zentrums München

Tetko, I.V. ; Novotarskyi, S.* ; Sushko, I.* ; Ivanov, V.* ; Petrenko, A.E.* ; Dieden, R.* ; Lebon, F.* ; Mathieu, B.*

Development of dimethyl sulfoxide solubility models using 163 000 molecules: Using a domain applicability metric to select more reliable predictions.

J. Chem. Inf. Model. 53, 1990-2000 (2013)
Verlagsversion Volltext DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The dimethyl sulfoxide (DMSO) solubility data from Enamine and two UCB pharma compound collections were analyzed using 8 different machine learning methods and 12 descriptor sets. The analyzed data sets were highly imbalanced with 1.7-5.8% nonsoluble compounds. The libraries' enrichment by soluble molecules from the set of 10% of the most reliable predictions was used to compare prediction performances of the methods. The highest accuracies were calculated using a C4.5 decision classification tree, random forest, and associative neural networks. The performances of the methods developed were estimated on individual data sets and their combinations. The developed models provided on average a 2-fold decrease of the number of nonsoluble compounds amid all compounds predicted as soluble in DMSO. However, a 4-9-fold enrichment was observed if only 10% of the most reliable predictions were considered. The structural features influencing compounds to be soluble or nonsoluble in DMSO were also determined. The best models developed with the publicly available Enamine data set are freely available online at http://ochem.eu/article/33409 .
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.304
1.328
38
46
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Associative Neural Networks ; Tetrahymena-pyriformis ; Aqueous Solubility ; Organic-compounds ; Dmso Solubility ; Qsar ; Descriptors ; Accuracy
Sprache englisch
Veröffentlichungsjahr 2013
HGF-Berichtsjahr 2013
ISSN (print) / ISBN 0021-9576
e-ISSN 1520-5142
Quellenangaben Band: 53, Heft: 8, Seiten: 1990-2000 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503000-003
PubMed ID 23855787
Scopus ID 84883238632
Erfassungsdatum 2013-09-25