PuSH - Publikationsserver des Helmholtz Zentrums München

Unveiling new biological relationships using shared hits of chemical screening assay pairs.

Bioinformatics 30, i579-i586 (2014)
Verlagsversion DOI PMC
Open Access Gold
MOTIVATION: Although the integration and analysis of the activity of small molecules across multiple chemical screens is a common approach to determine the specificity and toxicity of hits, the suitability of these approaches to reveal novel biological information is less explored. Here, we test the hypothesis that assays sharing selective hits are biologically related. RESULTS: We annotated the biological activities (i.e. biological processes or molecular activities) measured in assays and constructed chemical hit profiles with sets of compounds differing on their selectivity level for 1640 assays of ChemBank repository. We compared the similarity of chemical hit profiles of pairs of assays with their biological relationships and observed that assay pairs sharing non-promiscuous chemical hits tend to be biologically related. A detailed analysis of a network containing assay pairs with the highest hit similarity confirmed biological meaningful relationships. Furthermore, the biological roles of predicted molecular targets of the shared hits reinforced the biological associations between assay pairs. CONTACT: monica.campillos@helmholtz-muenchen.de Supplementary information: Supplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.621
1.708
5
4
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Unfolded Protein Response; Glucocorticoid Receptor; Target Prediction; Web Server; Cancer; Resource; Pubchem; Cells; Identification; Inhibition
Sprache englisch
Veröffentlichungsjahr 2014
HGF-Berichtsjahr 2014
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 30, Heft: 17, Seiten: i579-i586 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Bioinformatics and Systems Biology (IBIS)
German Center for Diabetes Reseach (DZD)
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-551700-002
PubMed ID 25161250
Scopus ID 84907022915
Erfassungsdatum 2014-08-26