PuSH - Publikationsserver des Helmholtz Zentrums München

Endes, C.* ; Schmid, O. ; Kinnear, C.* ; Mueller, S.* ; Camarero-Espinosa, S.* ; Vanhecke, D.* ; Foster, E.J.* ; Petri-Fink, A.* ; Rothen-Rutishauser, B.M.* ; Weder, C.* ; Clift, M.J.D.*

An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles.

Part. Fibre Toxicol. 11:40 (2014)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Background: The challenge remains to reliably mimic human exposure to high aspect ratio nanoparticles (HARN) via inhalation. Sophisticated, multi-cellular in vitro models are a particular advantageous solution to this issue, especially when considering the need to provide realistic and efficient alternatives to invasive animal experimentation for HARN hazard assessment. By incorporating a systematic test-bed of material characterisation techniques, a specific air-liquid cell exposure system with real-time monitoring of the cell-delivered HARN dose in addition to key biochemical endpoints, here we demonstrate a successful approach towards investigation of the hazard of HARN aerosols in vitro. Methods: Cellulose nanocrystals (CNCs) derived from cotton and tunicates, with differing aspect ratios (~9 and ~80), were employed as model HARN samples. Specifically, well-dispersed and characterised CNC suspensions were aerosolised using an " Air Liquid Interface Cell Exposure System" (ALICE) at realistic, cell-delivered concentrations ranging from 0.14 to 1.57 μg/cm2. The biological impact (cytotoxicity, oxidative stress levels and pro-inflammatory effects) of each HARN sample was then assessed using a 3D multi-cellular in vitro model of the human epithelial airway barrier at the air liquid interface (ALI) 24 hours post-exposure. Additionally, the testing strategy was validated using both crystalline quartz (DQ12) as a positive particulate control in the ALICE system and long fibre amosite asbestos (LFA) to confirm the susceptibility of the in vitro model to a fibrous insult. Results: A rapid (≤4 min), controlled nebulisation of CNC suspensions enabled a dose-controlled and spatially homogeneous CNC deposition onto cells cultured under ALI conditions. Real-time monitoring of the cell-delivered CNC dose with a quartz crystal microbalance was accomplished. Independent of CNC aspect ratio, no significant cytotoxicity (p > 0.05), induction of oxidative stress, or (pro)-inflammatory responses were observed up to the highest concentration of 1.57 μg/cm2. Both DQ12 and LFA elicited a significant (p < 0.05) pro-inflammatory response at sub-lethal concentrations in vitro.Conclusion: In summary, whilst the present study highlights the benign nature of CNCs, it is the advanced technological and mechanistic approach presented that allows for a state of the art testing strategy to realistically and efficiently determine the in vitro hazard concerning inhalation exposure of HARN.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
6.987
2.316
68
70
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Air Liquid Interface ; Alternative Testing Strategies ; Cellulose Nanocrystals ; Characterisation ; High Aspect Ratio Nanoparticles ; In Vitro ; Inhalation; Epithelial Airway Barrier; Walled Carbon Nanotubes; Respiratory-tract; Polymer Nanocomposites; Aerosol Generation; Oxidative Stress; Exposure System; Cell Exposure; Cellulose; Toxicity
Sprache englisch
Veröffentlichungsjahr 2014
HGF-Berichtsjahr 2014
ISSN (print) / ISBN 1743-8977
e-ISSN 1743-8977
Quellenangaben Band: 11, Heft: 1, Seiten: , Artikelnummer: 40 Supplement: ,
Verlag Biomed Central Ltd
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Lung Research
PSP-Element(e) G-505000-008
PubMed ID 25245637
Scopus ID 84908080475
Erfassungsdatum 2014-11-10